Optomechanical enhancement of doubly resonant 2D optical nonlinearity

We report 3300 times enhancement of second harmonic generation from a MoS2 monolayer by engineering the nonlinear light-matter interaction in a micro-electro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator.

[1]  Zhiyuan Li,et al.  Enhanced nonlinear frequency conversion in defective nonlinear photonic crystals with designed polarization distribution , 2010 .

[2]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[3]  Z. Ou,et al.  Enhanced conversion efficiency for harmonic generation with double resonance. , 1993, Optics letters.

[4]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[5]  C. Simonneau,et al.  Second-harmonic generation in a doubly resonant semiconductor microcavity. , 1997, Optics letters.

[6]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[7]  R. Agarwal,et al.  Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes , 2014, Nature Communications.

[8]  Electrical control of second-harmonic generation in a WSe2 monolayer transistor. , 2015, Nature nanotechnology.

[9]  K. W. Kim,et al.  Exciton valley relaxation in a single layer of WS 2 measured by ultrafast spectroscopy , 2014 .

[10]  Sefaattin Tongay,et al.  Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays. , 2015, Nano letters.

[11]  Naomi J. Halas,et al.  Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells , 2014 .

[12]  Andrea Alù,et al.  Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions , 2014, Nature.

[13]  G. D. Boyd,et al.  Resonant optical second harmonic generation and mixing , 1966 .

[14]  A. M. van der Zande,et al.  Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. , 2013, Applied physics letters.

[15]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[16]  Hai Zhu,et al.  Plasmonically enhanced thermomechanical detection of infrared radiation. , 2013, Nano letters.

[17]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[18]  V. Berger,et al.  Second-harmonic generation in monolithic cavities , 1997 .

[19]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[20]  M. S. Skolnick,et al.  Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities , 2014, Nano letters.

[21]  M. Lončar,et al.  High-efficiency second-harmonic generation in doubly-resonant χ(²) microring resonators. , 2012, Optics express.

[22]  Steven G. Johnson,et al.  Chi((2)) and Chi((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. , 2007, Optics express.

[23]  Marco Liscidini,et al.  Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Xiang Zhang,et al.  Edge Nonlinear Optics on a MoS2 Atomic Monolayer , 2014, Science.

[25]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[26]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.