Negatively Correlated Random Variables and Mason’s Conjecture for Independent Sets in Matroids

Abstract.Mason’s Conjecture asserts that for an m-element rank r matroid $${\mathcal{M}}$$ the sequence$$ (I_k /\left(_k^m\right): 0 \leq k \leq r) $$ is logarithmically concave, in which Ik is the number of independent k-sets of $${\mathcal{M}}$$ . A related conjecture in probability theory implies these inequalities provided that the set of independent sets of $${\mathcal{M}}$$ satisfies a strong negative correlation property we call the Rayleigh condition. This condition is known to hold for the set of bases of a regular matroid. We show that if ω is a weight function on a set system $${\mathcal{Q}}$$ that satisfies the Rayleigh condition then $${\mathcal{Q}}$$ is a convex delta-matroid and ω is logarithmically submodular. Thus, the hypothesis of the probabilistic conjecture leads inevitably to matroid theory. We also show that two-sums of matroids preserve the Rayleigh condition in four distinct senses, and hence that the Potts model of an iterated two-sums of uniform matroids satisfies the Rayleigh condition. Numerous conjectures and auxiliary results are included.

[1]  Geoffrey R. Grimmett,et al.  Negative association in uniform forests and connected graphs , 2004, Random Struct. Algorithms.

[2]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[3]  T. A. Dowling On the Independent Set Numbers of a Finite Matroid , 1980 .

[4]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[5]  YoungBin Choe,et al.  Polynomials with the half-plane property and the support theorems , 2005, J. Comb. Theory, Ser. B.

[6]  R. Lyons Determinantal probability measures , 2002, math/0204325.

[7]  Sergio Caracciolo,et al.  Fermionic field theory for trees and forests. , 2004, Physical review letters.

[8]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[9]  David G. Wagner,et al.  Rayleigh Matroids , 2006, Comb. Probab. Comput..

[10]  R. Jackson Inequalities , 2007, Algebra for Parents.

[11]  Abdelmalek Abdesselam The Grassmann-Berezin calculus and theorems of the matrix-tree type , 2004, Adv. Appl. Math..

[12]  Anders Björner,et al.  The unimodality conjecture for convex polytopes , 1981 .

[13]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[14]  Stephen Pewsey,et al.  Southend-on-Sea , 1995 .

[15]  William H. Cunningham,et al.  Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra , 1995, SIAM J. Discret. Math..

[16]  Paul Seymour On the points-lines-planes conjecture , 1982 .

[17]  David G. Wagner Rank-Three Matroids are Rayleigh , 2005, Electron. J. Comb..

[18]  K. V. Menon On the convolution of logarithmically concave sequences , 1969 .

[19]  D. Welsh,et al.  Combinatorial applications of an inequality from statistical mechanics , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  S. G. Hoggar Chromatic polynomials and logarithmic concavity , 1974 .

[21]  R. Pemantle Towards a theory of negative dependence , 2000, math/0404095.

[22]  André Bouchet,et al.  Greedy algorithm and symmetric matroids , 1987, Math. Program..

[23]  A. Björner Partial unimodality for f-vectors of simplicial polytopes and spheres , 1993 .

[24]  S. Chaiken A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .

[25]  Bill Jackson,et al.  Parity Systems and the Delta-Matroid Intersection Problem , 1999, Electron. J. Comb..

[26]  Carolyn Mahoney On the unimodality of the independent set numbers of a class of matroids , 1985, J. Comb. Theory, Ser. B.

[27]  Jeremy E Dawson A collection of sets related to the tutte polynomial of a matroid , 1984 .

[28]  Richard P. Stanley,et al.  Two Combinatorial Applications of the Aleksandrov-Fenchel Inequalities , 1981, J. Comb. Theory, Ser. A.

[29]  András Frank,et al.  Generalized polymatroids and submodular flows , 1988, Math. Program..

[30]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[31]  John Z. Imbrie,et al.  Branched polymers and dimensional reduction , 2001 .

[32]  Gian-Carlo ROTA COMBINATORIAL THEORY , OLD AND NEW by , 2022 .

[33]  David G. Wagner Matroid Inequalities from Electrical Network Theory , 2005, Electron. J. Comb..

[34]  Olga Holtz M-matrices satisfy Newton's inequalities , 2004, math/0512610.

[35]  Satoru Iwata,et al.  The linear delta-matroid parity problem , 2003, J. Comb. Theory, Ser. B.

[36]  S. N. Winkler,et al.  Negative association in uniform forests and connected graphs , 2004 .

[37]  Thomas M. Liggett Ultra Logconcave Sequences and Negative Dependence , 1997, J. Comb. Theory, Ser. A.

[38]  Bill Jackson,et al.  Zeros of chromatic and flow polynomials of graphs , 2002, math/0205047.

[39]  G. Royle,et al.  Location of Zeros of Chromatic and Related Polynomials of Graphs , 1994, Canadian Journal of Mathematics.