Analysis of Face Space for Recognition using Interval-Valued Subspace Technique

The major contribution of the research work presented in this chapter is the development of effective face recognition algorithm using analysis of face space in the interval-valued subspace. The analysis of face images is used for various purposes such as facial expression classification, gender determination, age estimation, emotion assessment, face recognition, et cetera. The research community of face image analysis has developed many techniques for face recognition; one of the successful techniques is based on subspace analysis. In the first part of the chapter, the authors present discussion of earliest face recognition techniques, which are considered as mile stones in the roadmap of subspace based face recognition techniques. The second part presents one of the efficient interval-valued subspace techniques, namely, symbolic Kernel Fisher Discriminant analysis (Symbolic KFD), in which the interval type features are extracted in contrast to classical subspace based techniques where single valued features are used for face representation and recognition. DOI: 10.4018/978-1-61350-429-1.ch007

[1]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[2]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[4]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Kieran Conboy,et al.  Group Process Losses in Agile Software Development Decision Making , 2013, Int. J. Intell. Inf. Technol..

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  Gunnar Rätsch,et al.  A Mathematical Programming Approach to the Kernel Fisher Algorithm , 2000, NIPS.

[9]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[10]  Baback Moghaddam,et al.  Principal Manifolds and Probabilistic Subspaces for Visual Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Martin D. Levine,et al.  Face Recognition Using the Discrete Cosine Transform , 2001, International Journal of Computer Vision.

[12]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[13]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[14]  Chengjun Liu,et al.  Evolutionary Pursuit and Its Application to Face Recognition , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  V. Sugumaran The Inaugural Issue of the International Journal of Intelligent Information Technologies , 2005 .

[16]  P. S. Hiremath,et al.  Symbolic Factorial Discriminant Analysis for Illumination Invariant Face Recognition , 2008, Int. J. Pattern Recognit. Artif. Intell..

[17]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[19]  P. S. Hiremath,et al.  Extraction and Recognition of Nonlinear Interval-Type Features Using Symbolic KDA Algorithm with Application to Face Recognition , 2008, J. Electr. Comput. Eng..

[20]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[21]  Li Zhao,et al.  Theoretical analysis of illumination in PCA-based vision systems , 1999, Pattern Recognit..

[22]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  B. De Moor,et al.  Least squares support vector machine regression for discriminant analysis , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[25]  Lawrence Sirovich,et al.  The global dimensionality of face space , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[26]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[27]  Stephen Shaoyi Liao,et al.  Classifying Consumer Comparison Opinions to Uncover Product Strengths and Weaknesses , 2011, Int. J. Intell. Inf. Technol..

[28]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998 .

[29]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[30]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[31]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[32]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[33]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[34]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[35]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  C. J. Prabhakar,et al.  Symbolic kernel fisher discriminant method with a new RBF kernel function for face recognition , 2009 .

[37]  Vijayan Sugumaran Intelligent Information Technologies: Concepts, Methodologies, Tools and Applications , 2007 .