Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Summary. A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.

[1]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[2]  H. Amann,et al.  Reaction-diffusion problems in electrolysis , 1994 .

[3]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[4]  R. Lui,et al.  Multi-dimensional electrochemistry model , 1995 .

[5]  Masayasu Mimura,et al.  Spatial segregation in competitive interaction-diffusion equations , 1980 .

[6]  Yuan Lou,et al.  Diffusion, Self-Diffusion and Cross-Diffusion , 1996 .

[7]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[8]  A. S. Kalashnikov Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations , 1987 .

[9]  J. U. Kim,et al.  Smooth solutions to a quasi-linear system of diffusion equations for a certain population model☆ , 1984 .

[10]  C. Marle,et al.  Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière , 1996 .

[11]  R. Redlinger Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics , 1995 .

[12]  Atsushi Yagi Global solution to some quasilinear parabolic system in population dynamics , 1993 .

[13]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[14]  Ansgar Jüngel,et al.  A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations , 2000 .

[15]  Katharina Post,et al.  A Non-linear Parabolic System Modeling Chemotaxis with Sensitivity Functions , 1999 .

[16]  Ansgar Jüngel,et al.  Symmetrization and entropy inequality for general diffusion equations , 1997 .

[17]  Gonzalo Galiano,et al.  Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics , 2001 .

[18]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[19]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[20]  Weihua Ruan,et al.  Positive Steady-State Solutions of a Competing Reaction-Diffusion System with Large Cross-Diffusion Coefficients , 1996 .

[21]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[22]  A. Jüngel,et al.  A quantum regularization of the one-dimensional hydrodynamic model for semiconductors , 2000, Advances in Differential Equations.

[23]  Paul Deuring,et al.  An initial-boundary-value problem for a certain density-dependent diffusion system , 1987 .

[24]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[25]  Alberto Tesei,et al.  Global existence of solutions for a strongly coupled quasilinear parabolic system , 1990 .

[26]  P. Degond,et al.  A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects , 1997 .