Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material.

The angular dependence of the hyper-Rayleigh scattered light intensity from a suspension of bacteriorhodopsin has been analyzed. The observation calls for combination of the second-order nonlinear hyperpolarizability of the retinal chromophore with the linear refractive index of the apo-protein matrix. The structuring of the small nonlinear chromophore in the large linear matrix imparts properties of a photonic bandgap to bacteriorhodopsin.

[1]  K. Clays,et al.  Evidence of Octopolar Symmetry in Bacteriorhodopsin Trimers by Hyper-Rayleigh Scattering from Purple Membrane Suspensions , 1996 .

[2]  R. Corbalán,et al.  Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice , 1995 .

[3]  Koen Clays,et al.  Hyper-Rayleigh scattering in solution. , 1991 .

[4]  E. Hendrickx,et al.  Nonlinear Optical Properties of Proteins Measured by Hyper-Rayleigh Scattering in Solution , 1993, Science.

[5]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[6]  Ekmel Ozbay,et al.  Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal , 2000 .

[7]  B. Temelkuran,et al.  Tight-binding description of the coupled defect modes in three-dimensional photonic crystals , 2000, Physical review letters.

[8]  Eric Hendrickx,et al.  Second-order nonlinear optics in isotropic liquids: Hyper-Rayleigh scattering in solution , 1995 .

[9]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[10]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[11]  R. Corbalán,et al.  Second harmonic generation in a photonic crystal , 1997 .

[12]  R. Birge,et al.  The ground-state dipole moments of all-trans- and 9-cis-retinal , 1981 .

[13]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[14]  A. Bjarklev,et al.  Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect. , 1999, Optics letters.

[15]  Eric Hendrickx,et al.  THE BACTERIORHODOPSIN CHROMOPHORE RETINAL AND DERIVATIVES : AN EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE SECOND-ORDER OPTICAL PROPERTIES , 1995 .

[16]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[17]  Andrews,et al.  Doubly forbidden second-harmonic generation from isotropic suspensions: Studies on the purple membrane of Halobacterium halobium. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  Shawn-Yu Lin,et al.  Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 microm. , 1999, Optics letters.

[19]  G. Rayfield,et al.  Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane. , 1994, Applied optics.

[20]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[21]  Ekmel Ozbay,et al.  Propagation of photons by hopping: A waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals , 2000 .

[22]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.