Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems
暂无分享,去创建一个
[1] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[2] J. Brian Conrey,et al. The Riemann Hypothesis, Volume 50, Number 3 , 2003 .
[3] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[4] K. Gödel. Consistency of the Continuum Hypothesis. (AM-3) , 1940 .
[5] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[6] A. Zhigljavsky,et al. Classical areas of mathematics where the concept of grossone could be useful , 2016 .
[7] Vieri Benci,et al. Numerosities of labelled sets: a new way of counting , 2003 .
[8] Louis D'Alotto,et al. Cellular automata using infinite computations , 2011, Appl. Math. Comput..
[9] Gabriele Lolli,et al. Infinitesimals and infinites in the history of mathematics: A brief survey , 2012, Appl. Math. Comput..
[10] Yaroslav D. Sergeyev,et al. Computations with Grossone-Based Infinities , 2015, UCNC.
[11] Renato De Leone,et al. The use of grossone in Mathematical Programming and Operations Research , 2011, Appl. Math. Comput..
[12] I. Stanimirović,et al. COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION , 2012 .
[13] Alfredo Garro,et al. Single-tape and multi-tape Turing machines through the lens of the Grossone methodology , 2013, The Journal of Supercomputing.
[14] Davide Rizza. Supertasks and numeral systems , 2016 .
[15] P. Gordon. Numerical Cognition Without Words: Evidence from Amazonia , 2004, Science.
[16] H. Isermann. Linear lexicographic optimization , 1982 .
[17] J. M. Child. The Early Mathematical Manuscripts Of Leibniz , 1921, The Mathematical Gazette.
[18] Franco Montagna,et al. Taking the Pirahã seriously , 2015, Commun. Nonlinear Sci. Numer. Simul..
[19] K. Knopp. Theory and Application of Infinite Series , 1990 .
[20] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[21] A. Kanamori. The higher infinite : large cardinals in set theory from their beginnings , 2005 .
[22] Yaroslav D. Sergeyev,et al. Counting systems and the First Hilbert problem , 2010, 1203.4141.
[23] Alfredo Garro,et al. Observability of Turing Machines: A Refinement of the Theory of Computation , 2010, Informatica.
[24] L. Corry. A Brief History of Numbers , 2015 .
[25] Yaroslav D. Sergeyev,et al. Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge ☆ , 2009, 1203.3150.
[26] L. Brugnano,et al. Solving differential problems by multistep initial and boundary value methods , 1998 .
[27] Robert Spira,et al. Zeros of sections of the zeta function. II , 1966 .
[28] Maurice Margenstern. Infinigons of the hyperbolic plane and grossone , 2016, Appl. Math. Comput..
[29] Donald A. Martin,et al. Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900 , 1979 .
[30] Brian Butterworth,et al. Numerical thought with and without words: Evidence from indigenous Australian children , 2008, Proceedings of the National Academy of Sciences.
[31] C. J. Keyser. Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .
[32] Yaroslav D. Sergeyev,et al. The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area , 2015, Commun. Nonlinear Sci. Numer. Simul..
[33] Francesca Mazzia,et al. A new mesh selection strategy with stiffness detection for explicit Runge-Kutta methods , 2015, Appl. Math. Comput..
[34] Louis D'Alotto. Finite and Infinite Computations and a Classification of Two-Dimensional Cellular Automata Using Infinite Computations , 2017, PaCT.
[35] Fabio Caldarola. The Sierpinski curve viewed by numerical computations with infinities and infinitesimals , 2018, Appl. Math. Comput..
[36] Yaroslav D. Sergeyev,et al. Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer , 2013 .
[37] Massimo Veltri,et al. Usage of infinitesimals in the Menger's Sponge model of porosity , 2011, Appl. Math. Comput..
[38] Yaroslav D. Sergeyev,et al. Numerical Methods for Solving Initial Value Problems on the Infinity Computer , 2016, Int. J. Unconv. Comput..
[39] Akihiro Kanamori,et al. The Mathematical Development of Set Theory from Cantor to Cohen , 1996, Bulletin of Symbolic Logic.
[40] M. Balazard,et al. Sur l'infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann , 2009, 0902.0923.
[41] R. Guy,et al. The Book of Numbers , 2019, The Crimean Karaim Bible.
[42] Manlio Gaudioso,et al. Numerical infinitesimals in a variable metric method for convex nonsmooth optimization , 2018, Appl. Math. Comput..
[43] E. Bombieri. Infinity: The Mathematical Infinity , 2011 .
[44] Yaroslav D. Sergeyev,et al. Higher order numerical differentiation on the Infinity Computer , 2011, Optim. Lett..
[45] W. Hugh Woodin,et al. The Continuum Hypothesis, Part I , 2001 .
[46] Jean-Michel Muller,et al. Elementary Functions: Algorithms and Implementation , 1997 .
[47] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[48] M. Potter. Orders of infinity , 2004 .
[49] John P. Mayberry. The Foundations of Mathematics in the Theory of Sets , 2001 .
[50] Petr Hájek,et al. The theory of semisets , 1972 .
[51] Yaroslav D. Sergeyev,et al. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities , 2008, Informatica.
[52] M. Colyvan. An Introduction to the Philosophy of Mathematics , 2012 .
[53] Y. Zou. Single Variable Calculus: A First Step , 2018 .
[54] E. Hairer,et al. Introduction to Analysis of the Infinite , 2008 .
[55] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[56] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[57] Renato De Leone,et al. Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications , 2018, Appl. Math. Comput..
[58] Gabriele Lolli,et al. Metamathematical investigations on the theory of Grossone , 2015, Appl. Math. Comput..
[59] Edward Sapir,et al. Selected Writings of Edward Sapir in Language, Culture and Personality , 1950 .
[60] Martin Berz,et al. Automatic differentiation as nonarchimedean analysis , 2003 .
[61] M. Zarepisheh,et al. A dual-based algorithm for solving lexicographic multiple objective programs , 2007, Eur. J. Oper. Res..
[62] Yaroslav D. Sergeyev,et al. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers , 2007 .
[63] One , 2004 .
[64] P. J. Cohen. Set Theory and the Continuum Hypothesis , 1966 .
[65] Roman G. Strongin,et al. Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .
[66] George Sugihara,et al. Fractals: A User's Guide for the Natural Sciences , 1993 .
[67] H. Sagan. Space-filling curves , 1994 .
[68] Joel S. Cohen,et al. Computer Algebra and Symbolic Computation: Mathematical Methods , 2003 .
[69] Jeff R. Cash,et al. An MEBDF code for stiff initial value problems , 1992, TOMS.
[70] Yaroslav D. Sergeyev,et al. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.
[71] Yaroslav D. Sergeyev,et al. Numerical computations and mathematical modelling with infinite and infinitesimal numbers , 2012, ArXiv.
[72] Yaroslav D. Sergeyev,et al. On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function , 2011, 1203.4142.
[73] Christian Bischof,et al. Computing derivatives of computer programs , 2000 .
[74] Yaroslav D. Sergeyev,et al. The Olympic Medals Ranks, Lexicographic Ordering, and Numerical Infinities , 2015, 1509.04313.
[75] Roberto Barrio,et al. Performance of the Taylor series method for ODEs/DAEs , 2005, Appl. Math. Comput..
[76] Group radicals and strongly compact cardinals , 2013 .
[77] Yaroslav D. Sergeyev. Using Blinking Fractals for Mathematical Modeling of Processes of Growth in Biological Systems , 2011, Informatica.
[78] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[79] A. Soyster,et al. Preemptive and nonpreemptive multi-objective programming: Relationship and counterexamples , 1983 .
[80] Maurice Margenstern. Using grossone to count the number of elements of infinite sets and the connection with bijections , 2011, ArXiv.
[81] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[82] Anatoly A. Zhigljavsky,et al. Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..
[83] Francesca Mazzia,et al. Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques , 1998 .