The neutralising and stimulatory effects of antimicrobial peptide LL-37 in human gingival fibroblasts.

[1]  H. Meng,et al.  Expression of vitamin D 1α-hydroxylase in human gingival fibroblasts in vivo , 2021, PeerJ.

[2]  T. Into,et al.  Effect of the Antimicrobial Peptide LL-37 on Gene Expression of Chemokines and 29 Toll-like Receptor-Associated Proteins in Human Gingival Fibroblasts Under Stimulation with Porphyromonas gingivalis Lipopolysaccharide , 2019, Probiotics and Antimicrobial Proteins.

[3]  Maelíosa T. C. McCrudden,et al.  Effects of LL-37 on Gingival Fibroblasts: A Role in Periodontal Tissue Remodeling? , 2018, Vaccines.

[4]  D. McAuley,et al.  The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro , 2017, Front. Microbiol..

[5]  H. Atmaca,et al.  Levels of ll-37 antimicrobial peptide in the gingival crevicular fluid of young and middle-aged subjects with or without gingivitis , 2016, Journal of Istanbul University Faculty of Dentistry.

[6]  E. Könönen,et al.  Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in Gingiva of Diabetics with Periodontitis. , 2015, Immunobiology.

[7]  Daniel Grenier,et al.  Synergistic Anti-Inflammatory Activity of the Antimicrobial Peptides Human Beta-Defensin-3 (hBD-3) and Cathelicidin (LL-37) in a Three-Dimensional Co-Culture Model of Gingival Epithelial Cells and Fibroblasts , 2014, PloS one.

[8]  G. Fonseca-Camarillo,et al.  Expression of interleukin (IL)‐19 and IL‐24 in inflammatory bowel disease patients: a cross‐sectional study , 2014, Clinical and experimental immunology.

[9]  S. Krisanaprakornkit,et al.  Favorable interleukin-8 induction in human gingival epithelial cells by the antimicrobial peptide LL-37. , 2013, Asian Pacific journal of allergy and immunology.

[10]  Maelíosa T. C. McCrudden,et al.  LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. , 2013, Journal of clinical periodontology.

[11]  H. Shimomura,et al.  Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. , 2013, Journal of periodontology.

[12]  D. Jönsson,et al.  The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. , 2012, Journal of periodontal research.

[13]  W. Coulter,et al.  Altered Toll-like Receptor 2-mediated Endotoxin Tolerance Is Related to Diminished Interferon β Production , 2011, The Journal of Biological Chemistry.

[14]  S. Krisanaprakornkit,et al.  Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. , 2011, Journal of periodontal research.

[15]  T. Into,et al.  Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. , 2010, European journal of oral sciences.

[16]  E. Veerman,et al.  The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity , 2010, Biological chemistry.

[17]  C. Chung,et al.  Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. , 2010, International journal of antimicrobial agents.

[18]  K. Hartshorn,et al.  Human defensins and LL‐37 in mucosal immunity , 2009, Journal of leukocyte biology.

[19]  S. Gorr Antimicrobial peptides of the oral cavity. , 2009, Periodontology 2000.

[20]  I. Chapple,et al.  Periodontal diagnosis and treatment--where does the future lie? , 2009, Periodontology.

[21]  A. Andoh,et al.  Expression of IL-24, an Activator of the JAK1/STAT3/SOCS3 Cascade, Is Enhanced in Inflammatory Bowel Disease , 2009, The Journal of Immunology.

[22]  G. Emingil,et al.  Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. , 2009, Journal of periodontology.

[23]  M. Yazdanbakhsh,et al.  Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses , 2009, Biological chemistry.

[24]  Bhagirath Singh,et al.  Involvement of SOCS3 in Regulation of CD11c+ Dendritic Cell-Derived Osteoclastogenesis and Severe Alveolar Bone Loss , 2009, Infection and Immunity.

[25]  T. Uchihashi,et al.  Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. , 2009, Journal of periodontal research.

[26]  G. Diamond,et al.  Host Defense Peptides in the Oral Cavity and the Lung: Similarities and Differences , 2008, Journal of dental research.

[27]  J. Potempa,et al.  Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. , 2008, Oral microbiology and immunology.

[28]  W. Giannobile Host-response therapeutics for periodontal diseases. , 2008, Journal of periodontology.

[29]  D. Graves,et al.  P. gingivalis and E. coli lipopolysaccharides exhibit different systemic but similar local induction of inflammatory markers. , 2008, Journal of periodontology.

[30]  D. Steinberg,et al.  Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent , 2007, Antimicrobial Agents and Chemotherapy.

[31]  Masato Kubo,et al.  SOCS proteins, cytokine signalling and immune regulation , 2007, Nature Reviews Immunology.

[32]  A. Uehara,et al.  Functional TLRs and NODs in Human Gingival Fibroblasts , 2007, Journal of dental research.

[33]  G. Garlet,et al.  Expression of suppressors of cytokine signaling in diseased periodontal tissues: a stop signal for disease progression? , 2006, Journal of periodontal research.

[34]  T. Kawai,et al.  Innate immune peptide LL‐37 displays distinct expression pattern from beta‐defensins in inflamed gingival tissue , 2006, Clinical and experimental immunology.

[35]  S. Socransky,et al.  Introduction to microbial aspects of periodontal biofilm communities, development and treatment. , 2006, Periodontology 2000.

[36]  V. Everts,et al.  Role of Polymorphonuclear Leukocyte-Derived Serine Proteinases in Defense against Actinobacillus actinomycetemcomitans , 2006, Infection and Immunity.

[37]  Y. Porat,et al.  In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. , 2006, The Journal of antimicrobial chemotherapy.

[38]  R. Claesson,et al.  Periodontal disease in patients from the original Kostmann family with severe congenital neutropenia. , 2006, Journal of periodontology.

[39]  C. Irwin,et al.  Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression , 2006, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[40]  Fiona S. L. Brinkman,et al.  Modulation of the TLR-Mediated Inflammatory Response by the Endogenous Human Host Defense Peptide LL-371 , 2006, The Journal of Immunology.

[41]  Y. Shai,et al.  Endotoxin (Lipopolysaccharide) Neutralization by Innate Immunity Host-Defense Peptides , 2006, Journal of Biological Chemistry.

[42]  K. Sayama,et al.  Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. , 2005, The Journal of antimicrobial chemotherapy.

[43]  R. Gallo,et al.  Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities , 2005, The Journal of Immunology.

[44]  R. Seymour,et al.  Current concepts in periodontal pathogenesis. , 2004, Dental update.

[45]  S. Way,et al.  Porphyromonas gingivalis Lipopolysaccharide Contains Multiple Lipid A Species That Functionally Interact with Both Toll-Like Receptors 2 and 4 , 2004, Infection and Immunity.

[46]  K. Rabe,et al.  The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor 1 , 2003, The Journal of Immunology.

[47]  M. Ståhle-Bäckdahl,et al.  The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. , 2003, The Journal of investigative dermatology.

[48]  Göran Carlsson,et al.  Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study , 2002, The Lancet.

[49]  Y. Izumi,et al.  Hepatocyte growth factor in gingival crevicular fluid and the distribution of hepatocyte growth factor-activator in gingival tissue from adult periodontitis. , 2002, Archives of oral biology.

[50]  R. Hancock,et al.  Cutting Edge: Cationic Antimicrobial Peptides Block the Binding of Lipopolysaccharide (LPS) to LPS Binding Protein1 , 2000, The Journal of Immunology.

[51]  T. Ohnishi,et al.  Expression of hepatocyte growth factor/scatter factor and c-Met in human dental papilla and fibroblasts from dental papilla. , 1999, Archives of oral biology.

[52]  A. Yoshimura,et al.  Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. , 1997, Journal of periodontal research.

[53]  T. Kirikae,et al.  Bacterial endotoxin: molecular relationships of structure to activity and function , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  R KOSTMANN,et al.  Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. , 1956, Acta paediatrica. Supplementum.

[55]  W. Coulter,et al.  Interferon-γ stimulates CD14, TLR2 and TLR4 mRNA expression in gingival fibroblasts increasing responsiveness to bacterial challenge. , 2016, Archives of oral biology.

[56]  K. Shibata,et al.  Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 and CXCL10 in human gingival fibroblasts. , 2010, Cellular immunology.

[57]  I. Nagaoka,et al.  An antibacterial protein CAP18/LL-37 enhanced production of hepatocyte growth factor in human gingival fibroblast cultures , 2007 .