Different Brains Process Numbers Differently: Structural Bases of Individual Differences in Spatial and Nonspatial Number Representations

A dominant hypothesis on how the brain processes numerical size proposes a spatial representation of numbers as positions on a “mental number line.” An alternative hypothesis considers numbers as elements of a generalized representation of sensorimotor-related magnitude, which is not obligatorily spatial. Here we show that individuals' relative use of spatial and nonspatial representations has a cerebral counterpart in the structural organization of the posterior parietal cortex. Interindividual variability in the linkage between numbers and spatial responses (faster left responses to small numbers and right responses to large numbers; spatial–numerical association of response codes effect) correlated with variations in gray matter volume around the right precuneus. Conversely, differences in the disposition to link numbers to force production (faster soft responses to small numbers and hard responses to large numbers) were related to gray matter volume in the left angular gyrus. This finding suggests that numerical cognition relies on multiple mental representations of analogue magnitude using different neural implementations that are linked to individual traits.

[1]  Brian Butterworth,et al.  Foundational numerical capacities and the origins of dyscalculia , 2010, Trends in Cognitive Sciences.

[2]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[3]  H. Bekkering,et al.  Symbols in numbers: From numerals to magnitude information , 2009 .

[4]  Daniel Ansari,et al.  Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study , 2010, NeuroImage.

[5]  Richard S. J. Frackowiak,et al.  Navigation-related structural change in the hippocampi of taxi drivers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[7]  John Ashburner,et al.  Structural plasticity in the bilingual brain: Proficiency in a second language and age at acquisition affect grey-matter density. , 2004 .

[8]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[9]  Giuseppe Vallar,et al.  Visualizing numbers in the mind's eye: The role of visuo-spatial processes in numerical abilities , 2008, Neuroscience & Biobehavioral Reviews.

[10]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[11]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[12]  J. Rothwell,et al.  Cortical Connectivity , 2012, Springer Berlin Heidelberg.

[13]  Richard S. J. Frackowiak,et al.  Neurolinguistics: Structural plasticity in the bilingual brain , 2004, Nature.

[14]  Karl J. Friston,et al.  Voxel-based morphometry of the human brain: Methods and applications , 2005 .

[15]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[16]  Geraint Rees,et al.  Political Orientations Are Correlated with Brain Structure in Young Adults , 2011, Current Biology.

[17]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[18]  Margarete Delazer,et al.  How specifically do we learn? Imaging the learning of multiplication and subtraction , 2006, NeuroImage.

[19]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[20]  V Menon,et al.  Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. , 2009, Cerebral cortex.

[21]  C. Caltagirone,et al.  Perceiving numbers alters time perception , 2008, Neuroscience Letters.

[22]  Christa Neuper,et al.  To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving , 2009, Neuropsychologia.

[23]  Lauretta Passarelli,et al.  Cortical Connectivity Suggests a Role in Limb Coordination for Macaque Area PE of the Superior Parietal Cortex , 2013, The Journal of Neuroscience.

[24]  Marco Zorzi,et al.  Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. , 2014, Cerebral cortex.

[25]  J. Moake,et al.  This article has been cited by other articles , 2003 .

[26]  M. Delazer,et al.  Learning complex arithmetic--an fMRI study. , 2003, Brain research. Cognitive brain research.

[27]  A. Kiesel,et al.  Congruency effects between number magnitude and response force. , 2010, Journal of experimental psychology. Learning, memory, and cognition.

[28]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[29]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[30]  Vincent Walsh A theory of magnitude: common cortical metrics of time, space and quantity , 2003, Trends in Cognitive Sciences.

[31]  John Adams Individual differences in mathematical ability: genetic, cognitive and behavioural factors , 2007 .

[32]  Guilherme Wood,et al.  On the Cognitive Link between Space and Number: A Meta-Analysis of the SNARC Effect , 2008 .

[33]  W. Fias The Importance of Magnitude Information in Numerical Processing: Evidence from the SNARC Effect , 1996 .

[34]  J. Gerstmann SYNDROME OF FINGER AGNOSIA, DISORIENTATION FOR RIGHT AND LEFT, AGRAPHIA AND ACALCULIA: LOCAL DIAGNOSTIC VALUE , 1940 .

[35]  Brian Butterworth,et al.  The Mathematical Brain , 1999 .

[36]  Kuncheng Li,et al.  Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model , 2015, Neuropsychologia.

[37]  Wim Fias,et al.  The mental representation of ordinal sequences is spatially organized , 2003, Cognition.

[38]  S. Dehaene,et al.  The mental representation of parity and number magnitude. , 1993 .

[39]  C. Schiltz,et al.  Task instructions determine the visuospatial and verbal–spatial nature of number–space associations , 2015, Quarterly journal of experimental psychology.

[40]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[41]  E. Luders,et al.  Voxel-Based Morphometry , 2015 .

[42]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[43]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[44]  Brian Butterworth,et al.  Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing , 2005, Neuropsychologia.

[45]  Ryota Kanai,et al.  What contributes to individual differences in brain structure? , 2014, Front. Hum. Neurosci..

[46]  J. Tzelgov,et al.  The Neural Signatures of Processing Semantic End Values in Automatic Number Comparisons , 2015, Front. Hum. Neurosci..

[47]  Daniel Ansari,et al.  Symbol processing in the left angular gyrus: Evidence from passive perception of digits , 2011, NeuroImage.

[48]  S. Dehaene Varieties of numerical abilities , 1992, Cognition.

[49]  Michael Andres,et al.  Number magnitude potentiates action judgements , 2007, Experimental Brain Research.

[50]  Wim Fias,et al.  The Mental Representation of Ordinal Sequences is Spatially Organised: Evidence from Days of the Week , 2004, Cortex.

[51]  Harold Bekkering,et al.  Getting a grip on numbers: numerical magnitude priming in object grasping. , 2007, Journal of experimental psychology. Human perception and performance.

[52]  Margot J. Taylor,et al.  Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations , 2011, NeuroImage.

[53]  Avishai Henik,et al.  Automatic and intentional processing of numerical information , 1992 .

[54]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[55]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[56]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[57]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[58]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[59]  Christa Neuper,et al.  Individual differences in mathematical competence predict parietal brain activation during mental calculation , 2007, NeuroImage.

[60]  Matthew F. S. Rushworth,et al.  The Mental Number Line and the Human Angular Gyrus , 2001, NeuroImage.

[61]  D. Ansari Effects of development and enculturation on number representation in the brain , 2008, Nature Reviews Neuroscience.

[62]  S. Bölte,et al.  Neural mechanisms of savant calendar calculating in autism: An MEG-study of few single cases , 2014, Brain and Cognition.

[63]  Harold Bekkering,et al.  A Feeling for Numbers: Shared Metric for Symbolic and Tactile Numerosities , 2013, Front. Psychology.

[64]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[65]  M. H. Fischer,et al.  The Future for Snarc Could Be Stark… , 2006, Cortex.

[66]  Roi Cohen Kadosh,et al.  Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation , 2008, Progress in Neurobiology.

[67]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[68]  S. Dehaene Origins of Mathematical Intuitions , 2009, Annals of the New York Academy of Sciences.

[69]  W. Gevers,et al.  The SNARC effect does not imply a mental number line , 2008, Cognition.

[70]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[71]  Ulrike Cress,et al.  Sensori-motor spatial training of number magnitude representation , 2011, Psychonomic bulletin & review.

[72]  R. Cohen Kadosh,et al.  Numerical representation in the parietal lobes: abstract or not abstract? , 2009, The Behavioral and brain sciences.

[73]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.