An Efficient Adaptive Procedure for Three-Dimensional Fragmentation Simulations

Abstract.We present a simple set of data structures, and a collection of methods for constructing and updating the structures, designed to support the use of cohesive elements in simulations of fracture and fragmentation. Initially, all interior faces in the triangulation are perfectly coherent, i.e. conforming in the usual finite element sense. Cohesive elements are inserted adaptively at interior faces when the effective traction acting on those faces reaches the cohesive strength of the material. The insertion of cohesive elements changes the geometry of the boundary and, frequently, the topology of the model as well. The data structures and methods presented here are straightforward to implement, and enable the efficient tracking of complex fracture and fragmentation processes. The efficiency and versatility of the approach is demonstrated with the aid of two examples of application to dynamic fracture.

[1]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[2]  M. E. Kipp,et al.  Numerical and experimental studies of high-velocity impact fragmentation , 1993 .

[3]  Michael Ortiz,et al.  Three‐dimensional adaptive meshing by subdivision and edge‐collapse in finite‐deformation dynamic–plasticity problems with application to adiabatic shear banding , 2002 .

[4]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[5]  M. Ortiz,et al.  Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation , 2000 .

[6]  M. Ortiz,et al.  Computational micromechanics , 1996 .

[7]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[8]  Subra Suresh,et al.  Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials , 1993 .

[9]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[10]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[11]  Michael Ortiz,et al.  Three‐dimensional finite‐element simulation of the dynamic Brazilian tests on concrete cylinders , 2000 .

[12]  Andrew J. Piekutowski,et al.  Fragmentation of a sphere initiated by hypervelocity impact with a thin sheet , 1995 .

[13]  J. Marsden,et al.  Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .

[14]  B. J. Baxter,et al.  A study of fragmentation in the ballistic impact of ceramics , 1994 .

[15]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[16]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[17]  D. Townsend,et al.  Ballistic impact of ceramics , 1989 .

[18]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[19]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[20]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[21]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[22]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[23]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[24]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[25]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .