Recognisable Languages over Monads

This paper proposes monads as a framework for algebraic language theory. Examples of monads include words and trees, finite and infinite. Each monad comes with a standard notion of an algebra, called an Eilenberg-Moore algebra, which generalises algebras studied in language theory like semigroups or \(\omega \)-semigroups. On the abstract level of monads one can prove theorems like the Myhill-Nerode theorem, the Eilenberg theorem; one can also define profinite objects.

[1]  L. Hannák,et al.  ON THE NUMBER OF CLONES CONTAINING ALL CONSTANTS (A PROBLEM OF R. MCKENZIE) , 1986 .

[2]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[3]  Mikolaj Bojanczyk,et al.  Transducers with Origin Information , 2013, ICALP.

[4]  Nicolas Bedon,et al.  Schützenberger and Eilenberg theorems for words on linear orderings , 2012, J. Comput. Syst. Sci..

[5]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[6]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[7]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[8]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[9]  Thomas Colcombet,et al.  Regular Languages of Words over Countable Linear Orderings , 2011, ICALP.

[10]  Magnus Steinby A theory of tree language varieties , 1992, Tree Automata and Languages.

[11]  I. Rosenberg MINIMAL CLONES I: THE FIVE TYPES , 1986 .

[12]  Wolfgang Thomas Logical Aspects in the Study of Tree Languages , 1984, CAAP.

[13]  Szymon Torunczyk Languages of Profinite Words and the Limitedness Problem , 2012, ICALP.

[14]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[15]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[16]  Thomas Wilke,et al.  Over words, two variables are as powerful as one quantifier alternation , 1998, STOC '98.

[17]  Thomas Wilke,et al.  An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..

[18]  Mikolaj Bojanczyk Nominal Monoids , 2013, Theory of Computing Systems.

[19]  Szymon Torunczyk,et al.  The MSO+U theory of (N, <) is undecidable , 2016, STACS.

[20]  Andreas Potthoff First-Order Logic on Finite Trees , 1995, TAPSOFT.

[21]  Zoltán Ésik,et al.  Axiomatizing the equational theory of regular tree languages , 2010, J. Log. Algebraic Methods Program..

[22]  Igor Walukiewicz,et al.  Forest algebras , 2008, Logic and Automata.

[23]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.

[24]  Serge Grigorieff,et al.  A Topological Approach to Recognition , 2010, ICALP.

[25]  Thomas Wilke An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.

[26]  Zoltán Ésik,et al.  On Logically Defined Recognizable Tree Languages , 2003, FSTTCS.

[27]  Mikolaj Bojanczyk,et al.  Algebra for Infinite Forests with an Application to the Temporal Logic EF , 2009, CONCUR.

[28]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[29]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .