Combining multiobjective fuzzy clustering and probabilistic ANN classifier for unsupervised pattern classification: Application to satellite image segmentation

An important approach to unsupervised pixel classification in remote sensing satellite imagery is to use clustering in the spectral domain. In this article, a recently proposed multiobjective fuzzy clustering scheme has been combined with artificial neural networks (ANN) based probabilistic classifier to yield better performance. The multiobjective technique is first used to produce a set of non-dominated solutions. A part of these solutions having high confidence level are then used to train the ANN classifier. Finally the remaining solutions are classified using the trained classifier. The performance of this technique has been compared with that of some other well- known algorithms for two artificial data sets and a IRS satellite image of the city of Calcutta.

[1]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[4]  David J. C. MacKay,et al.  The Evidence Framework Applied to Classification Networks , 1992, Neural Computation.

[5]  A. Messac,et al.  Smart Pareto filter: obtaining a minimal representation of multiobjective design space , 2004 .

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[8]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[9]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[10]  Lars Kai Hansen,et al.  Outlier estimation and detection application to skin lesion classification , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  Indraneel Das On characterizing the “knee” of the Pareto curve based on Normal-Boundary Intersection , 1999 .

[12]  C. A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Computational Intelligence Magazine.

[13]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[14]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[16]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[18]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[19]  Guido Stehr,et al.  Performance trade-off analysis of analog circuits by normal-boundary intersection , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[20]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[21]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[22]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[23]  L.K. Hansen,et al.  Adaptive regularization of neural classifiers , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[24]  Ujjwal Maulik,et al.  An improved algorithm for clustering gene expression data , 2007, Bioinform..

[25]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[26]  Joshua D. Knowles,et al.  Multiobjective clustering around medoids , 2005, 2005 IEEE Congress on Evolutionary Computation.

[27]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[28]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[31]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .