Scale-Hopping in Computer Simulations of Polymers

Polymer simulations can be performed at many different length scales by using techniques ranging from quantum chemistry to finite element via a hierarchy of coarser and coarser particle or field-based methods. Recent years have seen many efforts to connect simulations at different levels to 1) indirectly predict large-scale properties starting from fundamental models and 2) to accelerate the equilibration at more fundamental levels via the detour of coarse-grained levels. It is the purpose of the present synopsis to review some of the recent methodological advances concerning the systematic and, where available, automatic bridging between different levels of polymer simulation. #The author of this review has agreed to write a short follow-up to this article that will incorporate information provided by the readers. If you have comments, additions, clarifications, or remarks concerning this article, please send them to the author within 3 months after this article has appeared. The author will review them and collect them into a feedback article, which will appear in one of the coming issues of Soft Materials.

[1]  W. Mattice,et al.  Rotational isomeric state chains on a high coordination lattice: Dynamic Monte Carlo algorithm details , 2000 .

[2]  Kurt Kremer,et al.  Structure-property correlation of polymers, a Monte Carlo approach , 1991 .

[3]  Alexis T. Bell,et al.  Sorption Thermodynamics, Siting, and Conformation of Long n-Alkanes in Silicalite As Predicted by Configurational-Bias Monte Carlo Integration , 1995 .

[4]  Florian Müller-Plathe,et al.  Towards a computational approach to penetrant diffusion in semicrystalline polymers , 1991 .

[5]  Roland Faller,et al.  Modeling of poly(isoprene) melts on different scales , 2002 .

[6]  David E. Hanson,et al.  A mesoscale strength model for silica-filled polydimethylsiloxane based on atomistic forces obtained from molecular dynamics simulations , 2000 .

[7]  Wolfgang Paul,et al.  A mapping of realistic onto abstract polymer models and an application to two bisphenol polycarbonates , 1994 .

[8]  Jürg Nievergelt,et al.  A novel parallel-rotation algorithm for atomistic Monte Carlo simulation of dense polymer systems , 2001 .

[9]  Florian Müller-Plathe,et al.  Formation of Chain-Folded Structures in Supercooled Polymer Melts Examined by MD Simulations , 2002 .

[10]  Turkan Haliloglu,et al.  Simulations of rotational isomeric state models for poly(propylene) melts on a high coordination lattice , 1998 .

[11]  Michael Kotelyanskii,et al.  Building Large Amorphous Polymer Structures: Atomistic Simulation of Glassy Polystyrene , 1996 .

[12]  A. Sokal Monte Carlo methods for the self-avoiding walk , 1994, hep-lat/9509032.

[13]  Kurt Binder,et al.  Coarse-Graining Techniques , 2004 .

[14]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[15]  Pemra Doruker,et al.  Reverse Mapping of Coarse-Grained Polyethylene Chains from the Second Nearest Neighbor Diamond Lattice to an Atomistic Model in Continuous Space , 1997 .

[16]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[17]  Vlasis G. Mavrantzas,et al.  Directed Bridging Methods for Fast Atomistic Monte Carlo Simulations of Bulk Polymers , 2001 .

[18]  D. Frenkel,et al.  Understanding molecular simulation : from algorithms to applications. 2nd ed. , 2002 .

[19]  Kurt Binder,et al.  Modeling polyethylene with the bond fluctuation model , 1997 .

[20]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[21]  Kurt Kremer,et al.  The Effect of Bond Length on the Structure of Dense Bead-Spring Polymer Melts , 2001 .

[22]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[23]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[24]  Kurt Kremer,et al.  Spatial correlations in polycarbonates: Neutron scattering and simulation , 1999 .

[25]  Kurt Kremer,et al.  A NEW MECHANISM FOR PENETRANT DIFFUSION IN AMORPHOUS POLYMERS : MOLECULAR DYNAMICS SIMULATIONS OF PHENOL DIFFUSION IN BISPHENOL-A-POLYCARBONATE , 1999 .

[26]  Wayne L. Mattice,et al.  Introduction of short and long range energies to simulate real chains on the 2nnd lattice , 1996 .

[27]  Florian Müller-Plathe,et al.  Orientation of Liquid Crystal Monolayers on Polyimide Alignment Layers: A Molecular Dynamics Simulation Study , 2001 .

[28]  Andrei A. Gusev,et al.  Non-additive morphology effects in thermal expansion of three-phase materials , 2001 .

[29]  Vlasis G. Mavrantzas,et al.  Atomic structure of a high polymer melt , 2002 .

[30]  Vasily V. Bulatov,et al.  Materials Research by Means of Multiscale Computer Simulation , 2001 .

[31]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[32]  Reinier L. C. Akkermans,et al.  Coarse-grained dynamics of one chain in a polymer melt , 2000 .

[33]  Jt Johan Padding,et al.  Uncrossability constraints in mesoscopic polymer melt simulations: Non-rouse behavior of C120H242 , 2001 .

[34]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[35]  Junhan Cho,et al.  Estimation of Long-Range Interaction in Coarse-Grained Rotational Isomeric State Polyethylene Chains on a High Coordination Lattice , 1997 .

[36]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[37]  Timothy J. Madden,et al.  Dynamic simulation of diblock copolymer microphase separation , 1998 .

[38]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[39]  Alan H. Windle,et al.  Lattice modelling of penetrant diffusion through heterogeneous polymers , 2000 .

[40]  K. Binder,et al.  On the construction of coarse‐grained models for linear flexible polymer chains: Distribution functions for groups of consecutive monomers , 1991 .

[41]  Florian Müller-Plathe,et al.  Calculation of the lifetime of positronium in polymers via molecular dynamics simulations , 2000 .

[42]  Hendrik Meyer,et al.  Formation of Chain-Folded Structures in Supercooled Polymer Melts , 2000, cond-mat/0012264.

[43]  Wayne L. Mattice,et al.  Study on structure formation of short polyethylene chains via dynamic Monte Carlo simulation , 2001 .

[44]  K. Binder Phase Transitions of Polymer Blends and Block Copolymer Melts in Thin Films , 1999 .

[45]  Kari Laasonen,et al.  Hydration of Li+ ion. An ab initio molecular dynamics simulation , 2001 .

[46]  D. Y. Yoon,et al.  Static and Dynamic Properties of a n-C100H202 Melt from Molecular Dynamics Simulations , 1997 .

[47]  A. G. Schlijper,et al.  Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics , 1997 .

[48]  Florian Müller-Plathe,et al.  Structure and Dynamics of Liquid Diphenyl Carbonate Investigated by Molecular Dynamics Simulations , 1999 .

[49]  M. G. Rozman,et al.  Numerical search for morphologies providing ultra high elastic stiffness in filled rubbers , 1999 .

[50]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[51]  Wayne L. Mattice,et al.  Mapping of rotational isomeric state chains with asymmetric torsional potential energy functions on a high coordination lattice: Application to polypropylene , 1998 .

[52]  Turkan Haliloglu,et al.  Detection of the onset of demixing in simulations of polypropylene melts in which the chains differ only in stereochemical composition , 1999 .

[53]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[54]  J. E. Mark,et al.  Monte Carlo simulations on filler-induced network chain deformations and elastomer reinforcement from oriented oblate particles , 2002 .

[55]  A. Windle,et al.  A Monte Carlo lattice model for chain diffusion in dense polymer systems and its interlocking with molecular dynamics simulation , 2001 .

[56]  N. Maurits,et al.  Viscoelastic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach , 1998 .

[57]  A. A. Gusev,et al.  Rational Design of Nanocomposites for Barrier Applications , 2001 .

[58]  W. Mattice,et al.  New high-coordination lattice model for rotational isomeric state polymer chains , 1995 .

[59]  G. Fredrickson The theory of polymer dynamics , 1996 .

[60]  Morozov,et al.  Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  Won Ho Jo,et al.  Analysis of the elastic deformation of semicrystalline poly(trimethylene terephthalate) by the atomistic-continuum model , 2001 .

[62]  Andrei A. Gusev,et al.  Effect of Particle Agglomeration on the Elastic Properties of Filled Polymers , 2002 .

[63]  Alexis T. Bell,et al.  Dynamics of Long n-Alkanes in Silicalite: A Hierarchical Simulation Approach , 1996 .

[64]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[65]  Evaristo Riande,et al.  Experimental and Simulation Studies on the Transport of Argon in Polycarbonate Membranes , 2001 .

[66]  Jürg Nievergelt,et al.  A novel geometric embedding algorithm for efficiently generating dense polymer structures , 2001 .

[67]  Doros N. Theodorou,et al.  Molecular Modeling of Methane Diffusion in Glassy Atactic Polypropylene via Multidimensional Transition State Theory , 1998 .

[68]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[69]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[70]  Natasha M. Maurits,et al.  Three-dimensional simulation of hexagonal phase of a specific polymer system under shear: The dynamic density functional approach , 1998 .

[71]  Reinier L. C. Akkermans,et al.  Representation of Coarse-grained Potentials for Polymer Simulations , 2002 .

[72]  Dirk Reith,et al.  Coarse Graining of Nonbonded Inter-Particle Potentials Using Automatic Simplex Optimization to Fit Structural Properties , 2000 .

[73]  Martin Kröger,et al.  Projection from an atomistic chain contour to its primitive path , 2002 .

[74]  Pemra Doruker,et al.  Simulation of polyethylene thin films composed of various chain lengths , 2002 .

[75]  Reinier L. C. Akkermans,et al.  A structure-based coarse-grained model for polymer melts , 2001 .

[76]  Doros N. Theodorou,et al.  Coarse-Grained Molecular Simulation of Penetrant Diffusion in a Glassy Polymer Using Reverse and Kinetic Monte Carlo , 2001 .

[77]  W. V. Gunsteren,et al.  Dynamics of small molecules in bulk polymers , 1994 .

[78]  Sriram Swaminarayan,et al.  A multiscale model for polymer crystallization. II: Solidification of a macroscopic part , 1998 .

[79]  H. Cantow Properties of polymers , 1980 .

[80]  Alfred Uhlherr,et al.  Hierarchical simulation approach to structure and dynamics of polymers , 1998 .

[81]  Kurt Kremer,et al.  Multiscale Problems in Polymer Science: Simulation Approaches , 2001 .

[82]  Alexander P. Lyubartsev,et al.  Effective potentials for ion-DNA interactions , 1999 .

[83]  A. Windle,et al.  Monte Carlo simulation of polymer welding , 2001 .

[84]  Kurt Kremer,et al.  From many monomers to many polymers: Soft ellipsoid model for polymer melts and mixtures , 1998 .

[85]  Michael F. Herman,et al.  Using Force Field Simulations for the Evaluation of the Monomer Parameters for the Calculation of Diffusion Constants for Long Chain Polymer Melts , 2000 .

[86]  Andrei A. Gusev,et al.  Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite , 2000 .

[87]  Florian Müller-Plathe Combining quantum chemistry and molecular simulation , 1997 .

[88]  D. Reith,et al.  How does the chain extension of poly (acrylic acid) scale in aqueous solution? A combined study with light scattering and computer simulation , 2002 .

[89]  N. Maurits,et al.  Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach , 1998 .

[90]  J. Pablo Simulation of phase equilibria for chain molecules , 1992 .

[91]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[92]  Natasha M. Maurits,et al.  Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach , 1998 .

[93]  A. G. Schlijper,et al.  Computer simulation of dilute polymer solutions with the dissipative particle dynamics method , 1995 .

[94]  Berend Smit,et al.  Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials , 2001 .

[95]  Aneesur Rahman Determination of pair interactions from neutron inelastic scattering data , 1975 .

[96]  Vlasis G. Mavrantzas,et al.  Atomistic Molecular Dynamics Simulation of Polydisperse Linear Polyethylene Melts , 1998 .

[97]  Florian Müller-Plathe Molecular Simulation -- A Primer , 1997 .

[98]  R. D. Groot Mesoscopic Simulation of Polymer−Surfactant Aggregation , 2000 .

[99]  Andrzej Kloczkowski,et al.  Monte Carlo simulations on reinforcement of an elastomer by oriented prolate particles , 2001 .

[100]  E. Clementi,et al.  Monte Carlo and Molecular Dynamics Simulations , 1989 .

[101]  Scott T. Milner,et al.  Dynamics of n-alkanes: Comparison to Rouse model , 1998 .

[102]  S. Santos,et al.  From atomistic to continuum modeling of polymers - multiscale paradigms , 1998 .

[103]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[104]  Ilpo Vattulainen,et al.  On Coarse-Graining by the Inverse Monte Carlo Method: Dissipative Particle Dynamics Simulations Made to a Precise Tool in Soft Matter Modeling , 2002, cond-mat/0303583.

[105]  Dirk Reith,et al.  Mapping Atomistic to Coarse-Grained Polymer Models Using Automatic Simplex Optimization to Fit Structural Properties , 2001 .

[106]  D. Theodorou,et al.  Atomistic Monte Carlo simulation of cis-1,4 polyisoprene melts. II. Parallel tempering end-bridging Monte Carlo simulations , 2001 .

[107]  Dirk Reith,et al.  Properties of Poly(isoprene): Model Building in the Melt and in Solution , 2003 .

[108]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[109]  Philipp Maass,et al.  Soft ellipsoid model for Gaussian polymer chains , 2000 .

[110]  Vlasis G. Mavrantzas,et al.  Atomistic Molecular Dynamics Simulation of Stress Relaxation upon Cessation of Steady-State Uniaxial Elongational Flow , 2000 .

[111]  Kurt Binder,et al.  Monte Carlo and Molecular Dynamics Simulations Polymer , 1995 .

[112]  Florian Müller-Plathe,et al.  An All-Atom Force Field for Liquid Ethanol–Properties of Ethanol–Water Mixtures , 1996 .

[113]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[114]  Rahmi Ozisik,et al.  Comparison of the diffusion coefficients of linear and cyclic alkanes , 2002 .

[115]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[116]  K. Binder Phase transitions in polymer blends and block copolymer melts: Some recent developments , 1994 .

[117]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[118]  Roland Faller,et al.  Local Structure and Dynamics of Trans-polyisoprene oligomers , 2000 .

[119]  A. A. Louis,et al.  Accurate effective pair potentials for polymer solutions , 2000 .

[120]  Alan K. Soper,et al.  The quest for the structure of water and aqueous solutions , 1997 .

[121]  R. Friesner Computational Methods for Protein Folding , 2002 .

[122]  Roland Faller,et al.  Automatic parameterization of force fields for liquids by simplex optimization , 1999, J. Comput. Chem..

[123]  Kurt Kremer,et al.  Simulation of Polymer Melts: From Spherical to Ellipsoidal Beads , 2001 .

[124]  Andreas Heuer,et al.  Local Reorientation Dynamics of Semiflexible Polymers in the Melt , 2000 .

[125]  D. W. Van Krevelen,et al.  CHAPTER 1 – POLYMER PROPERTIES , 1997 .

[126]  David M. Ford,et al.  A molecular modeling study of entropic and energetic selectivities in Air separation with glassy polymers , 2000 .

[127]  Kurt Kremer,et al.  Simulation of Polymer Melts. II. From Coarse-Grained Models Back to Atomistic Description , 1998 .

[128]  Natasha M. Maurits,et al.  Equation of state and stress tensor in inhomogeneous compressible copolymer melts: Dynamic mean-field density functional approach , 1998 .

[129]  Piet D. Iedema,et al.  Pressure-induced phase separation of polymer-solvent systems with dissipative particle dynamics , 2000 .

[130]  Natasha Maurits,et al.  Dynamics of surface directed mesophase formation in block copolymer melts , 1999 .

[131]  Natasha Maurits,et al.  Simulation of 3D Mesoscale Structure Formation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of Dynamic Mean-Field Density Functional Theory , 1999 .

[132]  Kurt Kremer,et al.  Effects of excluded volume and bond length on the dynamics of dense bead-spring polymer melts , 2002 .

[133]  G. Fredrickson,et al.  Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids , 2002 .

[134]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .