Feasibility of using a physics engine to virtually compact asphalt mixtures in a gyratory compactor

[1]  R. Behringer,et al.  Packings of 3D stars: stability and structure , 2015, 1511.06026.

[2]  T. Matsushima,et al.  Simple shear simulation of 3D irregularly-shaped particles by image-based DEM , 2010 .

[3]  A. T. Papagiannakis,et al.  Micromechanical Analysis of Viscoelastic Properties of Asphalt Concretes , 2002 .

[4]  Lihua Li,et al.  Dynamic updating atlas for heart segmentation with a nonlinear field‐based model , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[5]  Tsun Ming Quincy Ma,et al.  Modelling Rocking Behaviour Using Physics Engine Simulation , 2018 .

[6]  Mandana S. Saravani,et al.  Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects , 2019, Journal of Energy Resources Technology.

[7]  Kentaro Uesugi,et al.  3D Shape Characterization and Image-Based DEM Simulation of the Lunar Soil Simulant FJS-1 , 2009 .

[8]  Leo Rothenburg,et al.  'Stress-force-fabric' relationship for assemblies of ellipsoids , 2001 .

[9]  K. Sepehr,et al.  Finite element modelling of asphalt concrete microstructure , 2004 .

[10]  Zohaib Amjad Khan,et al.  SmartSIM ‐ a virtual reality simulator for laparoscopy training using a generic physics engine , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[11]  Tang-Tat Ng,et al.  Particle shape effect on macro‐ and micro‐behaviors of monodisperse ellipsoids , 2009 .

[12]  William G. Buttlar,et al.  Discrete Element Modeling of Asphalt Concrete: Microfabric Approach , 2001 .

[14]  Zhanping You,et al.  Investigation of asphalt mixture internal structure consistency in accelerated discrete element models , 2020 .

[15]  Bahram Ravani,et al.  Validation of a physics engine for the simulation of material flows in cyber-physical production systems , 2019, Procedia CIRP.

[16]  Thomas Bräunl,et al.  Evaluation of real-time physics simulation systems , 2007, GRAPHITE '07.

[17]  Jingsong Chen,et al.  DEM Simulation of Laboratory Compaction of Asphalt Mixtures Using an Open Source Code , 2015 .

[18]  P. Cundall A computer model for simulating progressive, large-scale movements in blocky rock systems , 1971 .

[19]  Chaoqi Wang,et al.  Simulation of granular material in distinct element model based on real particle shape , 2020 .

[20]  Liang Li,et al.  Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures , 2017 .

[21]  C. Petit,et al.  Heterogeneous numerical modeling of asphalt concrete through use of a biphasic approach: Porous matrix/inclusions , 2013 .

[23]  Sungho Kim,et al.  Slope Based Intelligent 3D Disaster Simulation Using Physics Engine , 2016, Wirel. Pers. Commun..

[24]  Eyad Masad,et al.  A thermomechanical framework for modeling the compaction of asphalt mixes , 2008 .

[25]  Jürgen Hesser,et al.  Discrete element method (DEM) simulation and validation of a screw feeder system , 2016 .

[26]  Roman D. Hryciw,et al.  A corner preserving algorithm for realistic DEM soil particle generation , 2016 .

[27]  Samuel H Carpenter,et al.  The Bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate , 2001 .

[28]  Mehrdad Vasheghani Farahani,et al.  Mechanistic Study of Fines Migration in Porous Media Using Lattice Boltzmann Method Coupled With Rigid Body Physics Engine , 2019, Journal of Energy Resources Technology.

[29]  Zhanping You,et al.  Using discrete element models to track movement of coarse aggregates during compaction of asphalt mixture , 2018, Construction and Building Materials.

[30]  Jidong Zhao,et al.  Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach , 2019, Computer Methods in Applied Mechanics and Engineering.

[31]  Suvranu De,et al.  Using the PhysX engine for physics‐based virtual surgery with force feedback , 2009, The international journal of medical robotics + computer assisted surgery : MRCAS.

[32]  T. Ng,et al.  A three-dimensional discrete element model using arrays of ellipsoids , 1997 .

[33]  Hong Guan,et al.  Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine , 2014, Natural Hazards.

[34]  Andy Collop,et al.  Use of the Distinct Element Method to Model the Deformation Behavior of an Idealized Asphalt Mixture , 2004 .

[35]  Qingli Dai,et al.  Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models , 2007 .

[36]  X. Gong,et al.  Microscopic Characteristics of Field Compaction of Asphalt Mixture Using Discrete Element Method , 2019, Journal of Testing and Evaluation.

[37]  Sung-Bae Cho,et al.  Inference of other's internal neural models from active observation , 2015, Biosyst..

[38]  H. Dan,et al.  Random Modeling of Three-Dimensional Heterogeneous Microstructure of Asphalt Concrete for Mechanical Analysis , 2018, Journal of Engineering Mechanics.

[39]  Gilles Saussine,et al.  Force transmission in a packing of pentagonal particles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Huanan Yu,et al.  A micromechanical based three-dimensional DEM approach to characterize the complex modulus of asphalt mixtures , 2013 .

[41]  Andy Collop,et al.  Modelling dilation in an idealised asphalt mixture using discrete element modelling , 2006 .

[42]  Miguel A. Otaduy,et al.  Position-based Methods for the Simulation of Solid Objects in Computer Graphics , 2013, Eurographics.

[43]  Adam Bezuijen,et al.  Simulation of granular soil behaviour using the bullet physics library , 2015 .

[44]  Gerald A Huber,et al.  RATIONAL METHOD FOR LABORATORY COMPACTION OF HOT-MIX ASPHALT (WITH DISCUSSION AND CLOSURE) , 1994 .

[45]  T. Liebling,et al.  Three-dimensional distinct element simulation of spherocylinder crystallization , 2005 .

[46]  Dong Wang,et al.  Fundamental mechanics of asphalt compaction through FEM and DEM modeling , 2007 .

[47]  Habtamu Zelelew,et al.  Micromechanical Modeling of Asphalt Concrete Uniaxial Creep Using the Discrete Element Method , 2010 .

[48]  Paul W. Cleary,et al.  DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge , 2002 .

[49]  Zhanping You,et al.  3D discrete element models of the hollow cylindrical asphalt concrete specimens subject to the internal pressure , 2010 .

[50]  Philippe Gotteland,et al.  Influence of relative density on granular materials behavior: DEM simulations of triaxial tests , 2009 .

[51]  Eyad Masad,et al.  Finite element modelling of field compaction of hot mix asphalt. Part II: Applications , 2016 .

[52]  Hussain U Bahia,et al.  Distribution of Strains Within Hot-Mix Asphalt Binders: Applying Imaging and Finite-Element Techniques , 2000 .

[53]  Matthew Gilbert,et al.  Modelling granular soil behaviour using a physics engine , 2015 .

[54]  Xinzheng Lu,et al.  Hybrid Framework for Simulating Building Collapse and Ruin Scenarios Using Finite Element Method and Physics Engine , 2020, Applied Sciences.

[55]  E. Masad,et al.  Internal structure analysis of asphalt mixes to improve the simulation of Superpave gyratory compaction to field conditions , 2001 .

[56]  Shihui Shen,et al.  Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method , 2012 .

[57]  D. Little,et al.  Dynamic Modulus Prediction of Asphalt Concrete Mixtures through Computational Micromechanics , 2015 .

[58]  D. Pedroso,et al.  Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Junxing Zheng,et al.  Simulations of realistic granular soils in oedometer tests using physics engine , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[60]  G. Saussine,et al.  Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles , 2008, 0805.0178.

[61]  Masoud K. Darabi,et al.  Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures , 2015 .

[62]  Ehsan Izadi,et al.  Simulating direct shear tests with the Bullet physics library: A validation study , 2018, PloS one.

[63]  Xiang Shu,et al.  Air-Void Distribution Analysis of Asphalt Mixture Using Discrete Element Method , 2013 .

[64]  Changhong Zhou,et al.  Influence of particle shape on aggregate mixture’s performance: DEM results , 2019 .

[65]  Glenn R. McDowell,et al.  A method to model realistic particle shape and inertia in DEM , 2010 .

[66]  Eyad Masad,et al.  Finite element modelling of field compaction of hot mix asphalt. Part I: Theory , 2016 .

[67]  M. Oeser,et al.  Investigation of the microstructural fracture behaviour of asphalt mixtures using the finite element method , 2019 .

[68]  Harold L Von Quintus,et al.  COMPARATIVE EVALUATION OF LABORATORY COMPACTION DEVICES BASED ON THEIR ABILITY TO PRODUCE MIXTURES WITH ENGINEERING PROPERTIES SIMILAR TO THOSE PRODUCED IN THE FIELD , 1989 .

[69]  Hantao He,et al.  Simulation of Realistic Particles with Bullet Physics Engine , 2019, E3S Web of Conferences.

[70]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[71]  H. L. Ter Huerne,et al.  Simulation of HMA compaction by using FEM , 2008 .

[72]  T. Ma,et al.  Heterogeneity effect of mechanical property on creep behavior of asphalt mixture based on micromechanical modeling and virtual creep test , 2017 .

[73]  Hussain U Bahia,et al.  MODELING AND EXPERIMENTAL MEASUREMENTS OF STRAIN DISTRIBUTION IN ASPHALT MIXES , 2001 .

[74]  William G. Buttlar,et al.  Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures , 2004 .

[75]  P. Cleary,et al.  The influence of particle shape on flow modes in pneumatic conveying , 2011 .