Mössbauer study of rare-earth intermetallic compounds R3T29Si4B10

A 57Fe Mossbauer study has been conducted on the 57Fe doped novel rare-earth intermetallic compounds R3T29Si4B10 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu, T = Ni, Co). The 57Fe site assignment has been investigated by 57Fe Mossbauer spectroscopy combined with thermodynamic analysis and crystal field estimation. The investigation demonstrated that 57Fe atoms preferentially occupy the 2c crystallographic site with m2 local symmetry in the R3T29Si4B10 compounds. Sequentially, the 8j1, 8j2 and 8i2 crystallographic sites are the second preferentially occupied and 8i3 and 16 K sites are the third preferential occupancy group of iron atoms. The magnetic hyperfine interaction at 4.2 K demonstrates the effect of a spin-induced Co magnetic moment.

[1]  S. Campbell,et al.  LETTER TO THE EDITOR: Formation and structure of rare-earth intermetallic compounds R3Co29M4B10 , 2000 .

[2]  Hong-Shuo Li,et al.  Formation of the quaternary compounds Nd3(T1−xSix)33B10 (T=Co, Ni; 0.115≤x≤0.150) , 1999 .

[3]  S. Campbell,et al.  A TEM Investigation of the Symmetry of Nd3T-0.75pt29Si4B10 (T = Ni, Co) , 1998 .

[4]  A. Studer,et al.  Structural study of the rare-earth transition-metal intermetallic compound Nd3Ni29Si4B10 , 1998 .

[5]  H. Zhang,et al.  Local site symmetry of the Co(57Fe) sublattice in a Nd-Co(57Fe)-Si-B phase : Mössbauer investigation , 1998 .

[6]  J. Cadogan,et al.  A structural and magnetic study of Nd(Fe, Ni)8.5Si2.5 , 1998 .

[7]  Hong-Shuo Li,et al.  Magnetic behaviour of Nd3Co29Si4B10 , 1998 .

[8]  S. Campbell,et al.  Synthesis and crystal structure of the quaternary compound NdNi8SiB3 , 1997 .

[9]  S. Campbell,et al.  A new quaternary phase in the Nd-Co-B-Si system , 1993 .

[10]  S. Malik,et al.  Structure and magnetic properties of RCo/sub 9/Si/sub 2/ systems , 1989 .

[11]  S. Malik,et al.  Magnetic studies on ternary silicide: NdCo9Si2 , 1989 .

[12]  Y. Berthier,et al.  Magnetic properties of Nd(Co1−xFex)9Si2 alloys (0 < x ⩽ 0.55) from magnetization, NMR and Mössbauer studies , 1988 .

[13]  K. Buschow,et al.  Magnetic properties of YCo12B6 and GdCo12B6 intermetallics , 1988 .

[14]  K. Buschow,et al.  On the crystal-field-induced magnetic anisotropy in B-substituted RCo5 compounds , 1988 .

[15]  M. Jurczyk,et al.  Magnetic studies of RCo12B6 compounds (R=Y, Ce, Pr, Nd, Sm, Gd and Dy) , 1987 .

[16]  Dc Price,et al.  Empirical Lineshape for Computer Fitting of Spectral Data , 1981 .

[17]  A. Miedema,et al.  Cohesion in alloys — fundamentals of a semi-empirical model , 1980 .

[18]  S. Campbell,et al.  DISTRIBUTION OF ELECTRIC AND MAGNETIC HYPERFINE INTERACTIONS IN AN AMORPHOUS ALLOY , 1980 .

[19]  F. R. de Boer,et al.  Model predictions for the enthalpy of formation of transition metal alloys II , 1977 .

[20]  N. Hershkowitz,et al.  Temperature-dependent hyperfine interactions in Fe2B. , 1973 .

[21]  K. Niihara,et al.  A New Ternary Compound in Rare Earth-Cobalt-Boron System , 1972 .

[22]  K. Buschow Intermetallic Compounds of Rare Earth Elements and Ni, Co, or Fe , 1971, September 16.

[23]  N. N. GREENWOOD,et al.  Mossbauer Spectroscopy , 1966, Nature.

[24]  C. Johnson,et al.  Mössbauer Effect of Fe 37 in a Cobalt Single Crystal , 1965 .