Domain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems
暂无分享,去创建一个
[1] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..
[2] R. Freund,et al. Software for simplified Lanczos and QMR algorithms , 1995 .
[3] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[4] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[5] S. Ravindran,et al. Analysis and approximation of optimal control problems for a simplified Ginzburg-Landau model of superconductivity , 1997 .
[6] L. Trefethen,et al. Numerical linear algebra , 1997 .
[7] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[8] J. Lions,et al. Sur le contrôle parallèle des systèmes distribués , 1998 .
[9] O. Widlund,et al. Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .
[10] Volker Schulz,et al. Interior point multigrid methods for topology optimization , 2000 .
[11] O. Widlund. Domain Decomposition Algorithms , 1993 .
[12] Jorge Nocedal,et al. Automatic Preconditioning by Limited Memory Quasi-Newton Updating , 1999, SIAM J. Optim..
[13] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[14] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[15] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[16] A. Bounaim,et al. A Lagrangian Approach to a DDM for an Optimal Control Problem , 1998 .
[17] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[18] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[19] Zi-Cai Li,et al. Schwarz Alternating Method , 1998 .
[20] A. Hadjidimos. Iterative methods for the solution of linear systems , 1989 .
[21] Nicholas I. M. Gould,et al. On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..
[22] Olof B. Widlund,et al. Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..
[23] R. Freund,et al. A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .
[24] Michael A. Saunders,et al. Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..
[25] W. Symes,et al. Conjugate residual methods for almost symmetric linear systems , 1992 .
[26] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[27] Jinchao Xu,et al. A preconditioned GMRES method for nonsymmetric or indefinite problems , 1992 .
[28] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[29] P. Oswald,et al. Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .
[30] Ekkehard W. Sachs,et al. Block Preconditioners for KKT Systems in PDE—Governed Optimal Control Problems , 2001 .
[31] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[32] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[33] James E. Dennis,et al. A Comparison of Nonlinear Programming Approaches to an Elliptic Inverse Problem and a New Domain Dec , 1994 .
[34] Olof B. Widlund,et al. Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..
[35] J. Mandel. Balancing domain decomposition , 1993 .
[36] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[37] Jinchao Xu,et al. Some Estimates for a Weighted L 2 Projection , 1991 .
[38] Ladislav Lukand Jan Vl. Indefinitely Preconditioned Inexact Newton Method for Large Sparse Equality Constrained Non-linear Programming Problems , 1998 .
[39] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[40] Gene H. Golub,et al. Matrix computations , 1983 .
[41] Tony F. Chan,et al. On the Relationship between Overlapping and Nonoverlapping Domain Decomposition Methods , 1992, SIAM J. Matrix Anal. Appl..
[42] Jan Vlcek,et al. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..
[43] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[44] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[45] Matthias Heinkenschloss,et al. Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems , 2005 .
[46] Matthias Heinkenschloss,et al. Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .
[47] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[48] Jean-David Benamou,et al. A Domain Decomposition Method with Coupled Transmission Conditions for the Optimal Control of Systems Governed by Elliptic Partial Differential Equations , 1996 .
[49] T. Chan,et al. Domain decomposition algorithms , 1994, Acta Numerica.
[50] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[51] Gene H. Golub,et al. On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..
[52] Barry F. Smith,et al. Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .
[53] Eberhard Zeidler,et al. Applied Functional Analysis: Main Principles and Their Applications , 1995 .
[54] William G. Litvinov,et al. Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics , 2000 .
[55] Xiao,et al. MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME NONSYMMETRIC AND INDEFINITE PROBLEMS , 1993 .
[56] Max Gunzburger,et al. Finite element approximations of an optimal control problem associated with the scalar Ginzburg-Landau equation , 1991 .
[57] O. Widlund,et al. Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .
[58] Olof B. Widlund,et al. To overlap or not to overlap: a note on a domain decomposition method for elliptic problems , 1989 .
[59] E. Haber,et al. Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .
[60] Hoang Nguyen,et al. Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..
[61] Andrew J. Wathen,et al. Schur complement preconditioning for elliptic systems of partial differential equations , 2003, Numer. Linear Algebra Appl..
[62] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[63] Eberhard Zeidler,et al. Applied Functional Analysis , 1995 .
[64] Eugene M. Cliff,et al. Thermal-fluid control via finite-dimensional approximation , 1996 .
[65] O. Ghattas,et al. Parallel Preconditioners for KKT Systems Arising in Optimal Control of Viscous Incompressible Flows , 2000 .
[66] V. A. Barker,et al. Finite element solution of boundary value problems , 1984 .
[67] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[68] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[69] R. Hoppe,et al. Primal-Dual Newton-Type Interior-Point Method for Topology Optimization , 2002 .
[70] E. Haber,et al. A multigrid method for distributed parameter estimation problems. , 2003 .