Connectedness of fractals associated with Arnoux-Rauzy substitutions

Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux–Rauzy substitutions.

[1]  Shigeki Akiyama,et al.  Connectedness of number theoretical tilings , 2005, Discret. Math. Theor. Comput. Sci..

[2]  Valérie Berthé,et al.  Substitutive Arnoux-Rauzy sequences have pure discrete spectrum , 2011, ArXiv.

[3]  Xavier Provençal,et al.  A study of Jacobi-Perron boundary words for the generation of discrete planes , 2013, Theor. Comput. Sci..

[4]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[5]  Sébastien Ferenczi,et al.  Weak mixing and eigenvalues for Arnoux-Rauzy sequences , 2008 .

[6]  David Ruelle,et al.  Ergodic Theory of Axiom a Diffeomorphisms , 1975 .

[7]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[8]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[9]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[10]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[11]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[12]  Rufus Bowen,et al.  Markov partitions are not smooth , 1978 .

[13]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[14]  Fernique Thomas,et al.  MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .

[15]  Jean-Pierre Gazeau,et al.  Geometric study of the beta-integers for a Perron number and mathematical quasicrystals , 2004 .

[16]  M. Barge,et al.  Pure discrete spectrum in substitution tiling spaces , 2011, 1107.3598.

[17]  R. Adler,et al.  SYMBOLIC DYNAMICS AND MARKOV PARTITIONS , 1996 .

[18]  Thomas Fernique,et al.  Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..

[19]  H. Rao,et al.  ATOMIC SURFACES, TILINGS AND COINCIDENCE I. IRREDUCIBLE CASE , 2005 .

[20]  Valérie Berthé,et al.  Selfdual substitutions in dimension one , 2012, Eur. J. Comb..

[21]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[22]  Hiromi Ei,et al.  Decomposition theorem on invertible substitutions , 1998 .

[23]  Pierre Arnoux,et al.  Functional stepped surfaces, flips, and generalized substitutions , 2007, Theor. Comput. Sci..

[24]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[25]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[26]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[27]  Christiane Frougny,et al.  Rational numbers with purely periodic β‐expansion , 2009, 0907.0206.

[28]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[29]  Zhang Yiping,et al.  The structure of invertible substitutions on a three-letter alphabet , 2003 .

[30]  V. Berthé,et al.  Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions , 2007, 0710.3584.

[31]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[32]  V Canterini Connectedness of geometric representation of substitutions of Pisot type , 2003 .

[33]  Jörg M. Thuswaldner,et al.  Topological Properties of Rauzy Fractals , 2010 .

[34]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[35]  Sébastien Ferenczi,et al.  Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly , 2005 .

[36]  Richard Swanson,et al.  The Branch Locus for One-Dimensional Pisot Tiling Spaces , 2008 .

[37]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[38]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[39]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[40]  Marcy Barge,et al.  Geometric theory of unimodular Pisot substitutions , 2006 .

[41]  Thomas Fernique,et al.  Multidimensional Sturmian Sequences and Generalized Substitutions , 2006, Int. J. Found. Comput. Sci..

[42]  Julien Cassaigne,et al.  Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question de Morse et Hedlund , 2006 .

[43]  Ali Messaoudi,et al.  Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals , 2006 .

[44]  Shigeki Akiyama,et al.  Connectedness of number theoretic tilings , 2004 .

[45]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[46]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .