Tunable Micro- and Nanomechanical Resonators

Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators.

[1]  Ali H. Nayfeh,et al.  Exact solution and stability of postbuckling configurations of beams , 2008 .

[2]  B. Morgan,et al.  Vertically-Shaped Tunable MEMS Resonators , 2008, Journal of Microelectromechanical Systems.

[3]  Rob Ilic,et al.  Size and frequency dependent gas damping of nanomechanical resonators , 2008 .

[4]  N. Agraït,et al.  Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. , 2011, Ultramicroscopy.

[5]  Sutrisno Ibrahim,et al.  A review on frequency tuning methods for piezoelectric energy harvesting systems , 2012 .

[6]  Amitava DasGupta,et al.  Effect of stress on the pull-in voltage of membranes for MEMS application , 2009 .

[7]  Sebastien Hentz,et al.  Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances , 2011 .

[8]  Lijie Li,et al.  Recent Development of Micromachined Biosensors , 2011, IEEE Sensors Journal.

[9]  Mark R. Freeman,et al.  Bulk focused ion beam fabrication with three-dimensional shape control of nanoelectromechanical systems , 2010 .

[10]  Kazuhiro Kanda,et al.  Mechanical characteristics and applications of diamondlike-carbon cantilevers fabricated by focused-ion-beam chemical vapor deposition , 2006 .

[11]  Harsh Sharma,et al.  Torsional and lateral resonant modes of cantilevers as biosensors: alternatives to bending modes. , 2013, Analytical chemistry.

[12]  John E. Sader,et al.  Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order , 2007 .

[13]  M. Roukes,et al.  Surface adsorbate fluctuations and noise in nanoelectromechanical systems. , 2011, Nano letters.

[14]  M. Mehregany,et al.  Characterization of frequency tuning using focused ion beam platinum deposition , 2007 .

[15]  Thomas W. Kenny,et al.  Temperature-compensated high-stability silicon resonators , 2007 .

[16]  Ankit Jain,et al.  Extending and Tuning the Travel Range of Microelectromechanical Actuators Using Electrically Reconfigurable Nano-Structured Electrodes , 2013, Journal of Microelectromechanical Systems.

[17]  John E. Sader,et al.  Resonant frequencies of a rectangular cantilever beam immersed in a fluid , 2006 .

[18]  Michael L. Roukes,et al.  Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators , 2006 .

[19]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[20]  Colin Rawlings,et al.  Calibration of the spring constant of cantilevers of arbitrary shape using the phase signal in an atomic force microscope , 2012, Nanotechnology.

[21]  Liudi Jiang,et al.  Fabrication of SiC microelectromechanical systems using one-step dry etching , 2003 .

[22]  Noel C. MacDonald,et al.  Capacitance based tunable resonators , 1998 .

[23]  Seon-Uck Paek,et al.  A study of carbon-nanotube-based nanoelectromechanical resonators tuned by shear strain , 2012 .

[24]  Hongguang Li,et al.  Frequency shift of a nanowaveguide resonator driven by the tunable optical gradient force , 2014 .

[25]  L. Sekaric,et al.  Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators , 1999 .

[26]  Lijie Li,et al.  Frequency self-tuning of carbon nanotube resonator with application in mass sensors , 2013 .

[27]  Noel C. MacDonald,et al.  Independent tuning of linear and nonlinear stiffness coefficients [actuators] , 1998 .

[28]  Ya-Pu Zhao,et al.  Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer , 2006 .

[29]  Yuan Zhao,et al.  Surface stress-based biosensors. , 2014, Biosensors & bioelectronics.

[30]  Enrico Mastropaolo,et al.  Electrothermal actuation of silicon carbide ring resonators , 2009 .

[31]  J. L. Muñoz-Gamarra,et al.  Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories , 2013 .

[32]  Thomas Faust,et al.  Frequency and Q factor control of nanomechanical resonators , 2012, 1207.2403.

[33]  Ashok Kumar Pandey,et al.  Effect of coupled modes on pull-in voltage and frequency tuning of a NEMS device , 2013 .

[34]  Onur Tigli,et al.  Biosensors in the small scale: methods and technology trends. , 2013, IET nanobiotechnology.

[35]  Kenneth L. Shepard,et al.  Electrically integrated SU-8 clamped graphene drum resonators for strain engineering , 2013 .

[36]  M. Dukalski,et al.  Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator , 2013 .

[37]  F. Keulen,et al.  Application of electrostatic pull-in instability on sensing adsorbate stiffness in nanomechanical resonators , 2010 .

[38]  K. Schwab,et al.  Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor , 2002 .

[39]  Muhammad A. Alam,et al.  Strategies for dynamic soft-landing in capacitive microelectromechanical switches , 2011 .

[40]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[41]  Javier Tamayo,et al.  Origin of the response of nanomechanical resonators to bacteria adsorption , 2006 .

[42]  Ghader Rezazadeh,et al.  Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators , 2011, J. Frankl. Inst..

[43]  F. Ayazi,et al.  Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Huiling Duan,et al.  Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors , 2009 .

[45]  Javier Tamayo,et al.  Challenges for nanomechanical sensors in biological detection. , 2012, Nanoscale.

[46]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[47]  Noel C. MacDonald,et al.  A micromachined, single-crystal silicon, tunable resonator , 1995 .

[48]  Yin Zhang,et al.  Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Tae Song Kim,et al.  In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid , 2007 .

[50]  Balakumar Balachandran,et al.  Nonlinear oscillations of piezoelectric microresonators with curved cross-sections , 2008 .

[51]  Thomas Faust,et al.  On-chip interferometric detection of nanomechanical motion. , 2010, Nano letters.

[52]  E. Quevy,et al.  Ge-blade damascene process for post-CMOS integration of nano-mechanical resonators , 2004, IEEE Electron Device Letters.

[53]  É. Colinet,et al.  In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection. , 2010, Nanotechnology.

[54]  James Hone,et al.  SU-8 clamped CVD graphene drum resonators , 2016, 1612.04279.

[55]  M C Cross,et al.  Stochastic dynamics of nanoscale mechanical oscillators immersed in a viscous fluid. , 2004, Physical review letters.

[56]  Zhaohui Zhong,et al.  Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. , 2010, Nano letters.

[57]  V. Derycke,et al.  SWNT array resonant gate MOS transistor , 2010, Nanotechnology.

[58]  Ho Jung Hwang,et al.  Frequency change by inter-walled length difference of double-wall carbon nanotube resonator , 2009 .

[59]  Sebastien Hentz,et al.  Pull-In Retarding in Nonlinear Nanoelectromechanical Resonators Under Superharmonic Excitation , 2012 .

[60]  Roya Maboudian,et al.  Suspended mechanical structures based on elastic silicon nanowire arrays. , 2007, Nano letters.

[61]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[62]  Alan T. Zehnder,et al.  Entrainment of Micromechanical Limit Cycle Oscillators in the Presence of Frequency Instability , 2013, Journal of Microelectromechanical Systems.

[63]  T. D. Yuzvinsky,et al.  Ultrahigh frequency nanotube resonators. , 2006, Physical review letters.

[64]  K. Ekinci Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). , 2005, Small.

[65]  Ashok Kumar Pandey,et al.  Performance of an AuPd micromechanical resonator as a temperature sensor , 2010 .

[66]  Ashwin A. Seshia,et al.  Internal electrical and mechanical phase inversion for coupled resonator array MEMS filters , 2010 .

[67]  Shaoyi Jiang,et al.  Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. , 2010, Analytical chemistry.

[68]  C. Nguyen,et al.  High-Q HF microelectromechanical filters , 2000, IEEE Journal of Solid-State Circuits.

[69]  M. Roukes,et al.  Stress-induced variations in the stiffness of micro- and nanocantilever beams. , 2012, Physical review letters.

[70]  Alberto Ballestra,et al.  Effect of Residual Stress on the Mechanical Behaviour of Microswitches at Pull‐In , 2009 .

[71]  Xi-Qiao Feng,et al.  Surface effects on the elastic modulus of nanoporous materials , 2009 .

[72]  Robert H. Blick,et al.  Tunable coupled nanomechanical resonators for single-electron transport , 2002 .

[73]  J. Chaste,et al.  Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. , 2011, Nature nanotechnology.

[74]  Liwei Lin,et al.  A closed-form approach for frequency tunable comb resonators with curved finger contour , 2008 .

[75]  Theresa S. Mayer,et al.  Bottom-up assembly of large-area nanowire resonator arrays. , 2008, Nature nanotechnology.

[76]  Egbert Oesterschulze,et al.  Suspended plate microresonators with high quality factor for the operation in liquids , 2014 .

[77]  A. N. Cleland Nanophysics: Carbon nanotubes tune up , 2004, Nature.

[78]  John E Sader,et al.  Energy dissipation in microfluidic beam resonators: effect of Poisson's ratio. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[80]  Guang Meng,et al.  A review on slip models for gas microflows , 2012 .

[81]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[82]  J. Gorman,et al.  Large Stroke Electrostatic Comb-Drive Actuators Enabled by a Novel Flexure Mechanism , 2013, Journal of Microelectromechanical Systems.

[83]  M. Fu,et al.  Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope. , 2014, Nano letters.

[84]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[85]  Harold S. Park,et al.  A surface Cauchy–Born model for nanoscale materials , 2006 .

[86]  S. Manus,et al.  Coherent detection of nonlinear nanomechanical motion using a stroboscopic downconversion technique , 2009 .

[87]  Nicolae Lobontiu,et al.  Modeling of nanofabricated paddle bridges for resonant mass sensing , 2006 .

[88]  Javier Tamayo,et al.  Photothermal excitation of microcantilevers in liquids , 2006 .

[89]  A. Croy,et al.  Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators , 2013, Nanotechnology.

[90]  Gary K. Fedder,et al.  A quadratic-shaped-finger comb parametric resonator , 2013 .

[91]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[92]  Guang Meng,et al.  Thermoelastic damping in optical waveguide resonators with the bolometric effect. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  A. Bachtold,et al.  Ultrasensitive mass sensing with a nanotube electromechanical resonator. , 2008, Nano letters.

[94]  C. Lucat,et al.  Longitudinal vibration mode of piezoelectric thick-film cantilever-based sensors in liquid media , 2010 .

[95]  Vibhor Singh,et al.  CORRIGENDUM: Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene NEMS resonators , 2010 .

[96]  Christophe Dolabdjian,et al.  Magnetostrictive stress reconfigurable thin film resonators for near direct current magnetoelectric sensors , 2014 .

[97]  Robert A. Barton,et al.  Free-standing epitaxial graphene. , 2009, Nano letters.

[98]  Shin'ichi Warisawa,et al.  High Quality Factor Graphene Resonator Fabrication Using Resist Shrinkage-Induced Strain , 2012 .

[99]  Jian Lu,et al.  Analytical Modeling for the Bending Resonant Frequency of Multilayered Microresonators with Variable Cross-Section , 2011, Sensors.

[100]  Harold S. Park,et al.  Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress , 2008 .

[101]  Scott R Manalis,et al.  High precision particle mass sensing using microchannel resonators in the second vibration mode. , 2011, The Review of scientific instruments.

[102]  Yang Liu,et al.  Split and merge production systems: performance analysis and structural properties , 2010 .

[103]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[104]  Sang Jo Lee,et al.  Synthesis and bidirectional frequency tuning of cantilever-shape nano resonators using a focused ion beam. , 2013, ACS applied materials & interfaces.

[105]  John E. Sader,et al.  Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 2002 .

[106]  Mona E. Zaghloul,et al.  Modelling and measurements of a composite microcantilever beam for chemical sensing applications , 2006 .

[107]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[108]  Liying Jiang,et al.  The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects , 2011, Nanotechnology.

[109]  E. Weig,et al.  Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature , 2011, Nature Communications.

[110]  Jinghui Xu,et al.  A process-induced-frequency-drift resilient 32 kHz MEMS resonator , 2012 .

[111]  Aurelio Soma,et al.  Dynamic identification of electrostatically actuated MEMS in the frequency domain , 2010 .

[112]  Ashwin Sampathkumar,et al.  Photothermal operation of high frequency nanoelectromechanical systems , 2006 .

[113]  James Hone,et al.  Graphene nanoelectromechanical systems , 2013, Proceedings of the IEEE.

[114]  M. Roukes,et al.  Nonlinear mode-coupling in nanomechanical systems. , 2013, Nano letters.

[115]  Javier Tamayo,et al.  Arrays of dual nanomechanical resonators for selective biological detection. , 2009, Analytical chemistry.

[116]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[117]  James Hone,et al.  Electrothermal noise analysis in frequency tuning of nanoresonators , 2008 .

[118]  Derrick Langley,et al.  SRRs Embedded with MEMS Cantilevers to Enable Electrostatic Tuning of the Resonant Frequency , 2011, Experimental Mechanics.

[119]  Maxim Zalalutdinov,et al.  Frequency-tunable micromechanical oscillator , 2000 .

[120]  P. Parmiter,et al.  Electrothermally Actuated Silicon Carbide Tunable MEMS Resonators , 2012, Journal of Microelectromechanical Systems.

[121]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[122]  Jari Kinaret,et al.  Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators , 2009, Science.

[123]  Tae Song Kim,et al.  Dynamical response of nanomechanical resonators to biomolecular interactions , 2007, 0706.3743.

[124]  Eric Pop,et al.  Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates , 2007 .

[125]  Frank C. Hoppensteadt,et al.  Synchronization of MEMS resonators and mechanical neurocomputing , 2001 .

[126]  M. A. Popov,et al.  Mechanism of electric frequency tuning in composite resonators based on epitaxial ferrite films , 2012 .

[127]  T. Thundat,et al.  Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors , 2010 .

[128]  Jared Hertzberg,et al.  Linear and nonlinear coupling between transverse modes of a nanomechanical resonator , 2013 .

[129]  Hakan Urey,et al.  Frequency response of microcantilevers immersed in gaseous, liquid, and supercritical carbon dioxide , 2013 .

[130]  B. Reig,et al.  Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors , 2009, Nanotechnology.

[131]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[132]  Zenghui Wang,et al.  Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators , 2014, Scientific Reports.

[133]  Javier Tamayo,et al.  Effect of the adsorbate stiffness on the resonance response of microcantilever sensors , 2006 .

[134]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[135]  W. J. Venstra,et al.  Modal interactions of flexural and torsional vibrations in a microcantilever. , 2012, Ultramicroscopy.

[136]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[137]  John E Sader,et al.  Effect of surface stress on the stiffness of cantilever plates. , 2007, Physical review letters.

[138]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[139]  W. J. Venstra,et al.  Strongly coupled modes in a weakly driven micromechanical resonator , 2012 .

[140]  Mu Chiao,et al.  Post-packaging frequency tuning of microresonators by pulsed laser deposition , 2004 .

[141]  James Hone,et al.  Electrothermal tuning of Al–SiC nanomechanical resonators , 2006 .

[142]  Alberto Ballestra,et al.  Residual stress measurement method in MEMS microbeams using frequency shift data , 2009 .

[143]  Adrian M Ionescu,et al.  A single active nanoelectromechanical tuning fork front-end radio-frequency receiver , 2012, Nanotechnology.

[144]  Stephane Evoy,et al.  Tuning the resonant frequency of single-walled carbon nanotube bundle oscillators through electron-beam-induced cross-link formations , 2007 .

[145]  Dae Sung Yoon,et al.  Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics pri , 2011 .

[146]  S. Paulson,et al.  Torsional electromechanical systems based on carbon nanotubes , 2012, Reports on progress in physics. Physical Society.

[147]  D Garcia-Sanchez,et al.  Imaging mechanical vibrations in suspended graphene sheets. , 2008, Nano letters.

[148]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[149]  Yin Yao,et al.  Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials , 2015 .

[150]  Imed Zine-El-Abidine,et al.  A tunable mechanical resonator , 2009 .

[151]  Jeevak M. Parpia,et al.  Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues , 2002 .

[152]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[153]  R. Mutharasan,et al.  Biosensing using dynamic-mode cantilever sensors: a review. , 2012, Biosensors & bioelectronics.

[154]  Mark R. Freeman,et al.  Time-domain control of ultrahigh-frequency nanomechanical systems. , 2008, Nature nanotechnology.

[155]  Seong Chan Jun,et al.  Mechanical Properties Changes During Electrothermal RF Tuning in a Nanoelectromechanical Resonator , 2013, IEEE Transactions on Nanotechnology.

[156]  Peidong Yang,et al.  Self-transducing silicon nanowire electromechanical systems at room temperature. , 2008, Nano letters.

[157]  Mika A. Sillanpää,et al.  Microwave amplification with nanomechanical resonators , 2013, ISSCC.

[158]  R. N. Thurston,et al.  Effect of surface stress on the natural frequency of thin crystals , 1976 .

[159]  Xi-Qiao Feng,et al.  Theoretical analysis of resonance frequency change induced by adsorption , 2008 .

[160]  John E. Sader,et al.  Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface , 2005 .

[161]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[162]  M. Roukes,et al.  VHF, UHF and microwave frequency nanomechanical resonators , 2005 .

[163]  Vijay B. Shenoy,et al.  Atomistic calculations of elastic properties of metallic fcc crystal surfaces , 2005 .

[164]  Hanna Cho,et al.  Tunable, broadband nonlinear nanomechanical resonator. , 2010, Nano letters.

[165]  Scott S. Verbridge,et al.  Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. , 2010, Nano letters.

[166]  Nan Wang,et al.  Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire , 2012, Nanotechnology.

[167]  A. Maali,et al.  Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids , 2005 .

[168]  Masayoshi Esashi,et al.  Stress-induced mass detection with a micromechanical/nanomechanical silicon resonator , 2005 .

[169]  Matthias Imboden,et al.  Dissipation in nanoelectromechanical systems , 2014 .

[170]  Ankit Jain,et al.  Universal Resonant and Pull-in Characteristics of Tunable-Gap Electromechanical Actuators , 2013, IEEE Transactions on Electron Devices.

[171]  Vibhor Singh,et al.  Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators , 2010, Nanotechnology.

[172]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[173]  Yin Zhang,et al.  Determining the adsorption-induced surface stress and mass by measuring the shifts of resonant frequencies , 2013 .

[174]  Kenichiro Suzuki,et al.  Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator , 2013 .

[175]  Liviu Nicu,et al.  Mechanical effect of gold nanoparticles labeling used for biochemical sensor applications: A multimode analysis by means of SiNx micromechanical cantilever and bridge mass detectors , 2004 .

[176]  Taejoon Kouh,et al.  Pressure-sensing based on photothermally coupled operation of micromechanical beam resonator , 2013 .

[177]  W. J. Venstra,et al.  Nonlinear modal interactions in clamped-clamped mechanical resonators. , 2010, Physical review letters.

[178]  S. Manalis,et al.  Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection , 2006, Journal of Microelectromechanical Systems.

[179]  W. J. Venstra,et al.  Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator , 2011 .

[180]  Thomas Faust,et al.  Damping of nanomechanical resonators. , 2010, Physical review letters.

[181]  M. Roukes,et al.  Phase synchronization of two anharmonic nanomechanical oscillators. , 2013, Physical review letters.

[182]  John E. Sader,et al.  Flexural Resonant Frequencies of Thin Rectangular Cantilever Plates , 2008 .

[183]  Guang Meng,et al.  Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices , 2007, Sensors (Basel, Switzerland).

[184]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[185]  H A Kemhadjian,et al.  Study of the effect of boron doping on the aging of micromachined silicon cantilevers , 1995 .

[186]  Quan Wang,et al.  A review on applications of carbon nanotubes and graphenes as nano-resonator sensors , 2014 .

[187]  Guang Meng,et al.  Inclination Effects on the Frequency Tuning of Comb-Driven Resonators , 2013, Journal of Microelectromechanical Systems.

[188]  Hidekazu Tanaka,et al.  Programmable mechanical resonances in MEMS by localized joule heating of phase change materials. , 2013, Advanced materials.

[189]  G. K. Ho,et al.  High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps , 2003 .

[190]  Silvan Schmid,et al.  Photothermal infrared spectroscopy of airborne samples with mechanical string resonators. , 2013, Analytical chemistry.

[191]  Jeevak M. Parpia,et al.  Stress-based vapor sensing using resonant microbridges , 2010 .

[192]  Laurent Duraffourg,et al.  Overcoming limitations of nanomechanical resonators with simultaneous resonances , 2015, 1504.07533.

[193]  Oliver Brand,et al.  Effect of hydrodynamic force on microcantilever vibrations: applications to liquid-phase chemical sensing , 2014 .

[194]  Nicolae Lobontiu,et al.  Modeling, design, and characterization of multisegment cantilevers for resonant mass detection , 2008 .

[195]  Kenichiro Suzuki,et al.  Silicon Fishbone‐Shaped MEMS Resonator with Digitally Variable Resonant‐Frequency Tuning , 2010 .

[196]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[197]  R. Cabrera,et al.  Frequency Tuning of $\hbox{VO}_{2}$ -Coated Buckled Microbridges , 2011, Journal of Microelectromechanical Systems.

[198]  Paul Mulvaney,et al.  Dynamic similarity of oscillatory flows induced by nanomechanical resonators. , 2014, Physical review letters.

[199]  Mohammad Rashidi,et al.  Radio-wave oscillations of molecular-chain resonators. , 2014, Physical review letters.

[200]  Eva M. Weig,et al.  Universal transduction scheme for nanomechanical systems based on dielectric forces , 2009, Nature.

[201]  Marco Lazzarino,et al.  Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. , 2011, ACS nano.

[202]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[203]  Chulki Kim,et al.  Nonlinearity Control of Nanoelectromechanical Resonators , 2012, IEEE Electron Device Letters.

[204]  Chang-Wan Kim,et al.  Nanomechanical In Situ Monitoring of Proteolysis of Peptide by Cathepsin B , 2009, PloS one.

[205]  Felix von Oppen,et al.  Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators , 2013, Nature Physics.

[206]  J. Colton,et al.  Microcantilevers: sensing chemical interactions via mechanical motion. , 2008, Chemical reviews.

[207]  John E Sader,et al.  Spectral properties of microcantilevers in viscous fluid. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[208]  Seyyed M. Hasheminejad,et al.  Adsorption-induced resonance frequency shift in Timoshenko microbeams , 2011 .

[209]  Yi Zheng,et al.  Recent advances in microfluidic techniques for single-cell biophysical characterization. , 2013, Lab on a chip.

[210]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[211]  Michael L. Roukes,et al.  Dynamic range of nanotube- and nanowire-based electromechanical systems , 2005 .

[212]  James Hone,et al.  Electrothermal frequency tuning of a nano-resonator , 2006 .

[213]  H. Craighead,et al.  Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. , 2007, Nano letters.

[214]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[215]  Robert Puers,et al.  A review of MEMS oscillators for frequency reference and timing applications , 2011 .

[216]  Shin'ichi Warisawa,et al.  Nanomechanical tuning forks fabricated using focused-ion-beam chemical vapor deposition , 2012 .

[217]  Thomas W. Kenny,et al.  Acceleration insensitive encapsulated silicon microresonator , 2008 .

[218]  Philip X.-L. Feng,et al.  Dynamic range of atomically thin vibrating nanomechanical resonators , 2014 .

[219]  A. Ionescu,et al.  Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption. , 2012, ACS nano.

[220]  Seiji Akita,et al.  Photothermal Excitation of Cantilevered Carbon Nanotube Resonators , 2012 .

[221]  Jize Yan,et al.  Enhancing Parametric Sensitivity in Electrically Coupled MEMS Resonators , 2009, Journal of Microelectromechanical Systems.

[222]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[223]  Oliver Brand,et al.  Characteristics of Laterally Vibrating Resonant Microcantilevers in Viscous Liquid Media , 2012 .

[224]  Félix E. Fernández,et al.  A micro-mechanical resonator with programmable frequency capability , 2012 .

[225]  Ulrich Schmid,et al.  Design and characterization of AlN-based in-plane microplate resonators , 2013 .

[226]  Tae Song Kim,et al.  Micromechanical observation of the kinetics of biomolecular interactions , 2008 .

[227]  K. Weiss Vibration Problems in Engineering , 1965, Nature.

[228]  Wei Pang,et al.  Tuning the resonant frequency of resonators using molecular surface self-assembly approach. , 2015, ACS applied materials & interfaces.

[229]  Albert P. Pisano,et al.  Nonlinear behaviors of a comb drive actuator under electrically induced tensile and compressive stresses , 2007 .

[230]  Ricardo Garcia,et al.  Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. , 2010, Nature nanotechnology.

[231]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[232]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[233]  N. Lobontiu,et al.  Two microcantilever designs: lumped-parameter model for static and modal analysis , 2004, Journal of Microelectromechanical Systems.

[234]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[235]  Andreas K. Hüttel,et al.  Negative frequency tuning of a carbon nanotube nano-electromechanical resonator under tension (Phys. Status Solidi B 12/2013) , 2013 .

[236]  Pirjo Pasanen,et al.  Graphene for future electronics , 2012 .

[237]  J. F. Rhoads,et al.  Tunable, Dual-Gate, Silicon-on-Insulator (SOI) Nanoelectromechanical Resonators , 2012, IEEE Transactions on Nanotechnology.

[238]  M. Roukes,et al.  Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators , 2007 .

[239]  Jae Hyuck Jang,et al.  High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. , 2008, Nature materials.

[240]  C. Regal,et al.  Control of material damping in high-Q membrane microresonators. , 2011, Physical review letters.

[241]  K. Jensen,et al.  Tunable nanoresonators constructed from telescoping nanotubes. , 2006, Physical review letters.

[242]  Harold S. Park,et al.  Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered , 2009, Nanotechnology.

[243]  J. Robinson,et al.  Wafer-scale reduced graphene oxide films for nanomechanical devices. , 2008, Nano letters.

[244]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[245]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[246]  Stephen M. Heinrich,et al.  Thermal Excitation and Piezoresistive Detection of Cantilever In-Plane Resonance Modes for Sensing Applications , 2010, Journal of Microelectromechanical Systems.

[247]  S Mohammadi,et al.  Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers , 2013, Nanotechnology.

[248]  Fred van Keulen,et al.  Some considerations of effects-induced errors in resonant cantilevers with the laser deflection method , 2010 .

[249]  Xi Chen,et al.  Strain sensing of carbon nanotubes: Numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes , 2005 .

[250]  Humberto Campanella,et al.  Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators (FBARs) , 2007 .

[251]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[252]  Heow Pueh Lee,et al.  Surface stress effects on the resonance properties of cantilever sensors , 2005 .

[253]  Timon Rabczuk,et al.  Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism , 2012, Nanotechnology.

[254]  K. Khirallah Parametric Excitation, Amplification, and Tuning of MEMS Folded-Beam Comb Drive Oscillator , 2013, Journal of Microelectromechanical Systems.

[255]  Colin J. Lambert,et al.  Electron transport in carbon nanotubes. , 2004 .

[256]  Weileun Fang,et al.  High-$Q$ Integrated CMOS-MEMS Resonators With Deep-Submicrometer Gaps and Quasi-Linear Frequency Tuning , 2012, Journal of Microelectromechanical Systems.

[257]  Hiroshi Yabuno,et al.  Self-excited coupled cantilevers for mass sensing in viscous measurement environments , 2013 .

[258]  Ho Jung Hwang,et al.  Molecular dynamics study on resonance frequency shifts due to linear density of nanoclusters encapsulated in carbon nanotubes , 2012 .

[259]  Sebastien Hentz,et al.  Forced large amplitude periodic vibrations of non-linear Mathieu resonators for microgyroscope applications , 2011 .

[260]  Youngmo Jung,et al.  Effects of thermal noise on dynamic stress sensing of nanoelectromechanical resonators , 2009 .

[261]  Ilkka Tittonen,et al.  Design and fabrication of a tuning fork shaped voltage controlled resonator for low-voltage applications with additional tuning electrodes , 2013 .

[262]  Soumen Mandal,et al.  Superconducting nano-mechanical diamond resonators , 2014, 1401.7162.

[263]  Jan Mehner,et al.  A spectral vibration detection system based on tunable micromechanical resonators , 2005 .

[264]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[265]  M. Calleja,et al.  Biosensors Based on Nanomechanical Systems , 2013 .

[266]  Seong Chan Jun,et al.  Surface roughness effects on the frequency tuning performance of a nanoelectromechanical resonator , 2013, Nanoscale Research Letters.

[267]  A. Boisen,et al.  Cantilever-like micromechanical sensors , 2011 .

[268]  A. Herrera-May,et al.  Analytical Modeling for the Bending Resonant Frequency of Sensors Based on Micro and Nanoresonators With Complex Structural Geometry , 2011, IEEE Sensors Journal.

[269]  Brian D. Jensen,et al.  Shaped comb fingers for tailored electromechanical restoring force , 2003 .

[270]  Arvind Raman,et al.  Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. , 2008, Nano letters.

[271]  Joshua E.-Y. Lee,et al.  Frequency-based magnetic field sensing using Lorentz force axial strain modulation in a double-ended tuning fork , 2014 .

[272]  Guang Meng,et al.  Dynamics of carbon nanotubes mass detection involving phonon-tunnelling dissipation , 2012 .

[273]  T. Kenny,et al.  Temperature-Insensitive Composite Micromechanical Resonators , 2009, Journal of Microelectromechanical Systems.

[274]  A. Boisen,et al.  Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator , 2013 .

[275]  John E Sader,et al.  Nonmonotonic energy dissipation in microfluidic resonators. , 2009, Physical review letters.

[276]  Laurence D. Hurst,et al.  Genomic function (communication arising): Rate of evolution and gene dispensability , 2003, Nature.

[277]  M. Zdrojek,et al.  High-frequency nanotube mechanical resonators , 2011, 1207.4874.

[278]  Sang-Myung Lee,et al.  Micro- and nanocantilever devices and systems for biomolecule detection. , 2009, Annual review of analytical chemistry.

[279]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[280]  Thomas W. Kenny,et al.  The effect of the temperature-dependent nonlinearities on the temperature stability of micromechanical resonators , 2013 .

[281]  G. Steele,et al.  Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion , 2009, Science.

[282]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[283]  Behraad Bahreyni,et al.  Independent tuning of frequency and quality factor of microresonators , 2011 .

[284]  Joan Adler,et al.  Vibrational analysis of thermal oscillations of single-walled carbon nanotubes under axial strain , 2014 .

[285]  Oliver Ambacher,et al.  Micro‐ and nano‐electromechanical resonators based on SiC and group III‐nitrides for sensor applications , 2011 .

[286]  Mika Oksanen,et al.  Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout. , 2012, Nano letters.

[287]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[288]  S. Manalis,et al.  Toward attogram mass measurements in solution with suspended nanochannel resonators. , 2010, Nano letters.

[289]  E. S. Hung,et al.  Extending the travel range of analog-tuned electrostatic actuators , 1999 .

[290]  Ki Ryang Byun,et al.  Model schematics of carbon-nanotube-based-nanomechanical-tuner using piezoelectric strain , 2010 .

[291]  M. Calleja,et al.  Detection of bacteria based on the thermomechanical noise of a nanomechanical resonator: origin of the response and detection limits , 2008, Nanotechnology.

[292]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[293]  Jin He,et al.  Surface effect on the elastic behavior of static bending nanowires. , 2008, Nano letters.

[294]  M. Agarwal,et al.  Thermal Isolation of Encapsulated MEMS Resonators , 2008, Journal of Microelectromechanical Systems.

[295]  W. Pernice,et al.  Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. , 2011, Nature nanotechnology.

[296]  Yu Wang,et al.  Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. , 2014, Lab on a chip.

[297]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[298]  Maximilian J. Seitner,et al.  Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching , 2014, Nature Communications.

[299]  Thomas P. Burg,et al.  Suspended microchannel resonators for biomolecular detection , 2003 .

[300]  Wei Gao,et al.  Model for the adsorption-induced change in resonance frequency of a cantilever , 2006 .

[301]  Y. Blanter,et al.  Carbon nanotubes as nanoelectromechanical systems , 2003 .

[302]  Richard R. A. Syms,et al.  Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators , 1998 .

[303]  J. Vig,et al.  Resonator surface contamination-a cause of frequency fluctuations? , 1988, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[304]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[305]  Jonathan S. Colton,et al.  Influence of surface stress on the resonance behavior of microcantilevers , 2005 .

[306]  Jin He,et al.  Surface stress effect on bending resonance of nanowires with different boundary conditions , 2008 .

[307]  John E. Sader,et al.  Normal and torsional spring constants of atomic force microscope cantilevers , 2004 .

[308]  Massimo Vassalli,et al.  Dynamical characterization of vibrating AFM cantilevers forced by photothermal excitation , 2010 .

[309]  Changhong Ke,et al.  Resonant pull-in of a double-sided driven nanotube-based electromechanical resonator , 2009 .

[310]  John E. Sader,et al.  Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids , 2000 .

[311]  Wei Lu,et al.  Radio frequency nanowire resonators and in situ frequency tuning , 2009 .

[312]  Michael S. Lekas,et al.  Graphene mechanical oscillators with tunable frequency. , 2013, Nature nanotechnology.

[313]  J. Nguyen,et al.  Oven-Based Thermally Tunable Aluminum Nitride Microresonators , 2013, Journal of Microelectromechanical Systems.

[314]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[315]  Murali Krishna Ghatkesar,et al.  Resonating modes of vibrating microcantilevers in liquid , 2008 .

[316]  Tungyang Chen,et al.  Effects of high-order surface stress on static bending behavior of nanowires , 2011 .

[317]  Susan B. Sinnott,et al.  Tuning the torsional properties of carbon nanotube systems with axial prestress , 2008 .

[318]  T. T. Heikkila,et al.  Tension-induced nonlinearities of flexural modes in nanomechanical resonators , 2013 .

[319]  Ka-Di Zhu,et al.  All-optical mass sensing with coupled mechanical resonator systems , 2013 .

[320]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[321]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[322]  Robert C. Cammarata,et al.  SURFACE AND INTERFACE STRESS EFFECTS IN THIN FILMS , 1994 .

[323]  Suresh V. Garimella,et al.  Hydrodynamic loading of microcantilevers vibrating in viscous fluids , 2006 .

[324]  Robert A. Barton,et al.  Fabrication and performance of graphene nanoelectromechanical systems , 2011, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena.

[325]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[326]  Xianfan Xu,et al.  Ultrasensitive mass sensing using mode localization in coupled microcantilevers , 2006 .

[327]  Jing Liu,et al.  Brillouin cavity optomechanics with microfluidic devices , 2013, Nature Communications.

[328]  Richard R. A. Syms,et al.  Focused ion beam tuning of in-plane vibrating micromechanical resonators , 1999 .

[329]  Sebastien Hentz,et al.  Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators , 2009 .

[330]  Javier Tamayo,et al.  Shedding light on axial stress effect on resonance frequencies of nanocantilevers. , 2011, ACS nano.

[331]  Kivanc Azgin,et al.  The effects of tine coupling and geometrical imperfections on the response of DETF resonators , 2013 .

[332]  Robert E. Rudd,et al.  First-principles study of the Young’s modulus of Si ⟨001⟩ nanowires , 2006, cond-mat/0611073.

[333]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2001 .

[334]  Juan Atalaya,et al.  Mass loading induced dephasing in nanomechanical resonators , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[335]  Chang-Wan Kim,et al.  Finite size effect on nanomechanical mass detection: the role of surface elasticity , 2011, Nanotechnology.

[336]  I Lee,et al.  Note: precision viscosity measurement using suspended microchannel resonators. , 2012, The Review of scientific instruments.

[337]  Liwei Lin,et al.  Microcrystalline diamond micromechanical resonators with quality factor limited by thermoelastic damping , 2013 .

[338]  Kevin D. Murphy,et al.  Nonlinear dynamic response of beam and its application in nanomechanical resonator , 2012 .

[339]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[340]  Andres Castellanos-Gomez,et al.  Strong and tunable mode coupling in carbon nanotube resonators , 2012 .

[341]  Harold S. Park,et al.  Fermi-Pasta-Ulam physics with nanomechanical graphene resonators: intrinsic relaxation and thermalization from flexural mode coupling. , 2013, Physical review letters.

[342]  Haiyi Liang,et al.  Axial-strain-induced torsion in single-walled carbon nanotubes. , 2006, Physical review letters.

[343]  Guang Meng,et al.  Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation , 2007, IEEE Sensors Journal.

[344]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[345]  Keunhan Park,et al.  Precision density and volume contraction measurements of ethanol–water binary mixtures using suspended microchannel resonators , 2013 .

[346]  G. Meng,et al.  Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.

[347]  John E. Sader,et al.  Energy dissipation in microfluidic beam resonators , 2010, Journal of Fluid Mechanics.

[348]  Oliver Ambacher,et al.  Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications , 2007 .

[349]  Thomas W. Kenny,et al.  Mechanical characterization of aligned multi-walled carbon nanotube films using microfabricated resonators , 2012 .

[350]  Javier Tamayo,et al.  Phototermal self-excitation of nanomechanical resonators in liquids , 2008 .

[351]  Sebastien Hentz,et al.  Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses , 2010 .

[352]  I. Mahboob,et al.  Bit storage and bit flip operations in an electromechanical oscillator. , 2008, Nature nanotechnology.

[353]  Reza Abdolvand,et al.  Electronic Temperature Compensation of Lateral Bulk Acoustic Resonator Reference Oscillators Using Enhanced Series Tuning Technique , 2012, IEEE Journal of Solid-State Circuits.

[354]  Liwei Lin,et al.  Characterization of selective polysilicon deposition for MEMS resonator tuning , 2003 .

[355]  Jongbaeg Kim,et al.  Frequency Tuning of Nanowire Resonator Using Electrostatic Spring Effect , 2009, IEEE Transactions on Magnetics.

[356]  Steven W. Shaw,et al.  Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators , 2010 .

[357]  Joshua E.-Y. Lee,et al.  Characterization and modeling of electro-thermal frequency tuning in a mechanical resonator with integral crossbar heaters , 2013 .

[358]  Xi-Qiao Feng,et al.  Surface effects on buckling of nanowires under uniaxial compression , 2009 .

[359]  D. Pasini,et al.  Shape and Material Selection for Optimizing Flexural Vibrations in Multilayered Resonators , 2006, Journal of Microelectromechanical Systems.

[360]  Guohong Yun,et al.  Surface elasticity effect on the size-dependent elastic property of nanowires , 2012 .

[361]  Joel Moser,et al.  Parametric amplification and self-oscillation in a nanotube mechanical resonator. , 2011, Nano letters.

[362]  Liudi Jiang,et al.  SiC cantilever resonators with electrothermal actuation , 2006 .

[363]  G A Miller,et al.  Fiber-optic, cantilever-type acoustic motion velocity hydrophone. , 2012, The Journal of the Acoustical Society of America.

[364]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[365]  Liwei Lin,et al.  Active frequency tuning for micro resonators by localized thermal stressing effects , 2001 .

[366]  Yuehang Xu,et al.  Radio frequency electrical transduction of graphene mechanical resonators , 2010 .

[367]  Jae-Young Choi,et al.  Nonlinear characteristics in radio frequency nanoelectromechanical resonators , 2010 .

[368]  Vibhor Singh,et al.  Tuning mechanical modes and influence of charge screening in nanowire resonators , 2010, 1001.2882.

[369]  Takahito Ono,et al.  Suspended bimaterial microchannel resonators for thermal sensing of local heat generation in liquid , 2013 .

[370]  Jonathan M. Ward,et al.  Fine-tuning of whispering gallery modes in on-chip silica microdisk resonators within a full spectral range , 2013 .

[371]  Thomas W. Kenny,et al.  Scaling of amplitude-frequency-dependence nonlinearities in electrostatically transduced microresonators , 2007 .

[372]  Ahmet Taspinar,et al.  Probing the charge of a quantum dot with a nanomechanical resonator , 2012, 1208.5678.

[373]  Massimo Vassalli,et al.  Role of the driving laser position on atomic force microscopy cantilevers excited by photothermal and radiation pressure effects , 2010 .

[374]  Young-Ho Cho,et al.  A triangular electrostatic comb array for micromechanical resonant frequency tuning , 1998 .

[375]  W. Newell Miniaturization of tuning forks. , 1968, Science.

[376]  K. J. Gabriel,et al.  Design, fabrication, and operation of submicron gap comb-drive microactuators , 1992 .

[377]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[378]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[379]  Susan B. Sinnott,et al.  Torsional stiffening of carbon nanotube systems , 2007 .

[380]  Klaus Richter,et al.  Parametric frequency tuning of phase-locked nanoelectromechanical resonators , 2001 .

[381]  Farrokh Ayazi,et al.  Dynamic tuning of MEMS resonators via electromechanical feedback , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[382]  S. Manalis,et al.  Suspended microchannel resonators with piezoresistive sensors. , 2011, Lab on a chip.

[383]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[384]  Thomas Faust,et al.  Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators , 2013, 1310.3671.

[385]  James Hone,et al.  Coupling Strongly, Discretely , 2009, Science.

[386]  Guang Meng,et al.  Effect of surface layer thickness on buckling and vibration of nonlocal nanowires , 2014 .

[387]  Gloria Platero,et al.  Unidirectional direct current in coupled nanomechanical resonators by tunable symmetry breaking , 2014 .

[388]  H. Postma,et al.  Atomic-scale mass sensing using carbon nanotube resonators. , 2008, Nano letters.

[389]  H. V. D. van der Zant,et al.  Bending-mode vibration of a suspended nanotube resonator. , 2006, Nano letters.

[390]  Enrico Mastropaolo,et al.  Low frequency graphene resonators for acoustic sensing , 2014 .

[391]  J. W. Lou,et al.  Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number , 2013 .

[392]  R. Rajapakse,et al.  Continuum Models Incorporating Surface Energy for Static and Dynamic Response of Nanoscale Beams , 2010, IEEE Transactions on Nanotechnology.

[393]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[394]  Sangmin Jeon,et al.  Facile Phase Transition Measurements for Nanogram Level Liquid Samples Using Suspended Microchannel Resonators , 2014, IEEE Sensors Journal.

[395]  Werner Wegscheider,et al.  Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems , 2002 .

[396]  C. Nguyen,et al.  Frequency-selective MEMS for miniaturized low-power communication devices , 1999 .

[397]  O. Hansen,et al.  Mass and position determination of attached particles on cantilever based mass sensors. , 2007, The Review of scientific instruments.

[398]  Brian H. Houston,et al.  A loss mechanism study of a very high Q silicon micromechanical oscillator , 2005 .

[399]  Eleanor E. B. Campbell,et al.  Nanoelectromechanical devices with carbon nanotubes , 2013 .

[400]  Guang Meng,et al.  Noise-induced chaos in the electrostatically actuated MEMS resonators , 2011 .

[401]  Ankit Jain,et al.  Universal scaling and intrinsic classification of electro-mechanical actuators , 2013 .

[402]  Ark-Chew Wong,et al.  VHF free-free beam high-Q micromechanical resonators , 2000, Journal of Microelectromechanical Systems.

[403]  Seiji Akita,et al.  Carbon nanotube resonator in liquid. , 2010, Nano letters.

[404]  A. Zettl,et al.  Tuning nanoelectromechanical resonators with mass migration. , 2009, Nano letters.

[405]  Alun Harris,et al.  Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down , 2005 .

[406]  M. C. Gordillo,et al.  Atomic monolayer deposition on the surface of nanotube mechanical resonators. , 2014, Physical review letters.

[407]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[408]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[409]  Ho Jung Hwang,et al.  Molecular dynamics study on nanotube-resonators with mass migration applicable to both frequency-tuner and data-storage-media , 2011 .

[410]  J. Plaza,et al.  Strong coupling between mechanical modes in a nanotube resonator. , 2012, Physical review letters.

[411]  Franco Nori,et al.  Coherent manipulation of a Majorana qubit by a mechanical resonator , 2015, 1506.05879.

[412]  Sebastien Hentz,et al.  Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications , 2010 .

[413]  Chul Sung Kim,et al.  Photothermal Effect and Heat Dissipation in a Micromechanical Resonator , 2012 .

[414]  Jeong Won Kang,et al.  A molecular dynamics simulation study on resonance frequencies comparison of tunable carbon-nanotube resonators ☆ , 2012 .

[415]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.