Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity

[1]  R. Toupin Elastic materials with couple-stresses , 1962 .

[2]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[3]  E. Kröner,et al.  On the physical reality of torque stresses in continuum mechanics , 1963 .

[4]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[5]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[6]  R. D. Mindlin Stress functions for a Cosserat continuum , 1965 .

[7]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[8]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[9]  A. Cemal Eringen,et al.  Linear theory of micropolar viscoelasticity , 1967 .

[10]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[11]  A. Eringen Theory of micromorphic materials with memory , 1972 .

[12]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[13]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[14]  Morton E. Gurtin,et al.  Surface stress in solids , 1978 .

[15]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[16]  A. Polyanin Handbook of Integral Equations , 1998 .

[17]  E. Aifantis Strain gradient interpretation of size effects , 1999 .

[18]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[19]  Castrenze Polizzotto,et al.  Nonlocal elasticity and related variational principles , 2001 .

[20]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[21]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[22]  P. Fuschi,et al.  Closed form solution for a nonlocal elastic bar in tension , 2003 .

[23]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[24]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[25]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[26]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[27]  H. P. Lee,et al.  Thin plate theory including surface effects , 2006 .

[28]  K. M. Liew,et al.  Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures , 2007 .

[29]  C. Wang,et al.  The small length scale effect for a non-local cantilever beam: a paradox solved , 2008, Nanotechnology.

[30]  N. Challamel,et al.  A dispersive wave equation using nonlocal elasticity , 2009 .

[31]  Reza Ansari,et al.  Nonlocal plate model for free vibrations of single-layered graphene sheets , 2010 .

[32]  R. Ansari,et al.  Surface stress effects on the free vibration behavior of nanoplates , 2011 .

[33]  S. Narendar,et al.  Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics , 2011 .

[34]  Francesco dell’Isola,et al.  How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert” , 2012 .

[35]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[36]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[37]  Francesco dell’Isola,et al.  Geometrically nonlinear higher-gradient elasticity with energetic boundaries , 2013 .

[38]  C. Wang,et al.  On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach , 2014, Archive of Applied Mechanics.

[39]  Omid Rahmani,et al.  Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory , 2014 .

[40]  A. Carcaterra Quantum Euler beam—QUEB: modeling nanobeams vibration , 2015 .

[41]  Castrenze Polizzotto,et al.  A unifying variational framework for stress gradient and strain gradient elasticity theories , 2015 .

[42]  J. N. Reddy,et al.  Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved , 2016 .

[43]  Reza Ansari,et al.  Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis , 2016 .

[44]  Mesut Şimşek,et al.  Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach , 2016 .

[45]  R. Ansari,et al.  Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects , 2016, Microfluidics and Nanofluidics.

[46]  Francesco dell’Isola,et al.  Some Cases of Unrecognized Transmission of Scientific Knowledge: From Antiquity to Gabrio Piola’s Peridynamics and Generalized Continuum Theories , 2016 .

[47]  Jooeun Lee,et al.  Impact fracture analysis enhanced by contact of peridynamic and finite element formulations , 2016 .

[48]  A. Norouzzadeh,et al.  Micromorphic first-order shear deformable plate element , 2016 .

[49]  M. Aydogdu,et al.  Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity , 2016 .