Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations.

The very large number of distinct structures that are known for metal-organic frameworks (MOFs) and related materials presents both an opportunity and a challenge for identifying materials with useful properties for targeted applications. We show that efficient computational models can be used to evaluate large numbers of MOFs for kinetic separations of light gases based on finding materials with large differences between the diffusion coefficients of adsorbed gas species. We introduce a geometric approach that rapidly identifies the key features of a pore structure that control molecular diffusion and couple this with efficient molecular modeling calculations that predict the Henry's constant and diffusion activation energy for a range of spherical adsorbates. We demonstrate our approach for >500 MOFs and >160 silica zeolites. Our results indicate that many large pore MOFs will be of limited interest for separations based on kinetic effects, but we identify a significant number of materials that are predicted to have extraordinary properties for separation of gases such as CO(2), CH(4), and H(2).

[1]  Sangil Kim,et al.  Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation , 2006 .

[2]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[3]  Easir A Khan,et al.  Synthesis of continuous MOF-5 membranes on porous α-alumina substrates , 2009 .

[4]  Rajamani Krishna,et al.  Comment on comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[5]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[6]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[7]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[8]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[9]  W. Koros,et al.  Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors , 1994 .

[10]  George Xomeritakis,et al.  Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth , 2001 .

[11]  J. Falconer,et al.  Alumina-supported SAPO-34 membranes for CO2/CH4 separation. , 2008, Journal of the American Chemical Society.

[12]  K. Seki Dynamic channels of a porous coordination polymer responding to external stimuli , 2002 .

[13]  S. Goodbody,et al.  Molecular simulation of methane and butane in silicalite , 1991 .

[14]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[15]  Robin Taylor,et al.  Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii , 1996 .

[16]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[17]  Wei Zhou,et al.  Hydrogen storage in a prototypical zeolitic imidazolate framework-8. , 2007, Journal of the American Chemical Society.

[18]  David S. Sholl,et al.  Using first-principles calculations to accelerate materials discovery for hydrogen purification membranes by modeling amorphous metals , 2008 .

[19]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[20]  Alexis T. Bell,et al.  Prediction of low occupancy sorption of alkanes in silicalite , 1990 .

[21]  D. Sholl,et al.  Atomically detailed models of gas mixture diffusion through CuBTC membranes , 2009 .

[22]  D. Sholl,et al.  CONCERTED DIFFUSION OF MOLECULAR CLUSTERS IN A MOLECULAR SIEVE , 1997 .

[23]  George Xomeritakis,et al.  Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth , 1999 .

[24]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[25]  C. Serre,et al.  On the breathing effect of a metal-organic framework upon CO(2) adsorption: Monte Carlo compared to microcalorimetry experiments. , 2007, Chemical communications.

[26]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[27]  D. Sholl,et al.  Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification , 2010 .

[28]  Igor Rivin,et al.  A geometric solution to the largest-free-sphere problem in zeolite frameworks , 2006 .

[29]  E. Glandt,et al.  MOLECULAR SIMULATION STUDY OF THE SURFACE BARRIER EFFECT. DILUTE GAS LIMIT , 1995 .

[30]  C. Vandecasteele,et al.  Zeolite-filled PDMS membranes .1. Sorption of halogenated hydrocarbons , 1997 .

[31]  D. Sholl,et al.  Normal, single-file, and dual-mode diffusion of binary adsorbate mixtures in AlPO4-5 , 1997 .

[32]  M. Zaworotko,et al.  A new supramolecular isomer of [Zn(nicotinate)2]n: a novel 4(2).8(4) network that is the result of self-assembly of 4-connected nodes. , 2002, Chemical communications.

[33]  Seda Keskin,et al.  Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[34]  D. Sholl,et al.  Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5. , 2009, Physical chemistry chemical physics : PCCP.

[35]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[36]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[37]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[38]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[39]  Maciej Haranczyk,et al.  Navigating molecular worms inside chemical labyrinths , 2009, Proceedings of the National Academy of Sciences.

[40]  D. Sholl,et al.  Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites. , 2009, Journal of the American Chemical Society.

[41]  Dirk Demuth,et al.  NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites , 1996, Science.

[42]  A. Bondi van der Waals Volumes and Radii , 1964 .

[43]  David S. Sholl,et al.  Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations , 2002 .

[44]  D. Sholl,et al.  Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A , 2003 .

[45]  D. Sholl,et al.  Assessment of a Metal−Organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations: CO2, CH4, N2, H2 Mixtures in MOF-5 , 2009 .

[46]  R. Ranjan,et al.  Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method , 2009 .

[47]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[48]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[49]  D. Olson,et al.  Separation of hydrocarbons with a microporous metal-organic framework. , 2006, Angewandte Chemie.

[50]  Z. Lai,et al.  Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth , 2009 .