Homogenization of Elastic Media with Gaseous Inclusions
暂无分享,去创建一个
Yvon Maday | Céline Grandmont | L. Baffico | Axel Osses | A. Osses | C. Grandmont | Y. Maday | L. Baffico
[1] Bertrand Maury,et al. A multiscale/multimodel approach of the respiration tree. New trends in continuum mechanics , 2005 .
[2] Ivan Hlaváček,et al. On inequalities of Korn's type , 1970 .
[3] Salah Naili,et al. A one-dimensional model for the propagation of transient pressure waves through the lung. , 2002, Journal of biomechanics.
[4] Jeannine Saint Jean Paulin,et al. HOMOGENIZATION AND TWO-SCALE CONVERGENCE FOR A STOKES OR NAVIER-STOKES FLOW IN AN ELASTIC THIN POROUS MEDIUM , 1996 .
[5] S. Mancini,et al. An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees , 2005, Computer methods in biomechanics and biomedical engineering.
[6] Doina Cioranescu,et al. Homogenization in perforated domains with rapidly pulsing perforations , 2003 .
[7] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[8] B. Wiggs,et al. Comparison of the shear modulus of mature and immature rabbit lungs. , 1999, Journal of applied physiology.
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[11] Yves Achdou,et al. Diffusion and propagation problems in some ramified domains with a fractal boundary , 2006 .
[12] E. Weibel. Morphometry of the Human Lung , 1965, Springer Berlin Heidelberg.
[13] Yves Achdou,et al. A Multiscale Numerical Method for Poisson Problems in Some Ramified Domains with a Fractal Boundary , 2006, Multiscale Model. Simul..
[14] B. Sapoval,et al. Interplay between geometry and flow distribution in an airway tree. , 2003, Physical review letters.
[15] R Takaki,et al. A three-dimensional model of the human pulmonary acinus. , 2000, Journal of applied physiology.
[16] Albert Gjedde,et al. The pathway for oxygen in brain. , 2003, APMIS. Supplementum.
[17] J. Laidlaw,et al. ANATOMY OF THE HUMAN BODY , 1967, The Ulster Medical Journal.
[18] Grégoire Allaire,et al. Bloch-wave homogenization for a spectral problem in fluid-solid structures , 1996 .
[19] Nicolas Meunier,et al. A viscoelastic model with non-local damping application to the human lungs , 2006 .
[20] Mark A. Lewis,et al. The Mechanics of Lung Tissue under High-Frequency Ventilation , 2001, SIAM J. Appl. Math..
[21] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[22] Alfio Quarteroni,et al. Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations , 2003, Multiscale Model. Simul..
[23] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory , 1980 .
[24] Carlos Conca,et al. On the application of the homogenization theory to a class of problems arising in fluid mechanics , 1985 .
[25] R. Bruce Lindsay,et al. Nonhomogeneous Media and Vibration Theory, by Enrique Sanchez‐Palencia , 1981 .
[26] G. Allaire. Homogenization and two-scale convergence , 1992 .
[27] Nicolas Meunier,et al. OUTLET DISSIPATIVE CONDITIONS FOR AIR FLOW IN THE BRONCHIAL TREE , 2005 .
[28] Quentin Grimal,et al. Étude dans le domaine temporel de la propagation d'ondes élastiques en milieux stratifiés : modélisation de la réponse du thorax à un impact , 2003 .
[29] Carlos Conca. Numerical results on the homogenization of Stokes and Navier-Stokes equations modeling a class of problems from fluid mechanics , 1985 .
[30] Yvon Maday,et al. A Reduced Basis Element Method for Complex Flow Systems , 2006 .
[31] C. Conca,et al. Fluids And Periodic Structures , 1995 .
[32] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[33] J. Lions,et al. Les inéquations en mécanique et en physique , 1973 .
[34] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .