Theoretische Grundlagen des Auxiliarsubstratkonzeptes und seine praktischen Konsequenzen in biotechnischen Prozessen

Raw materials for microbial synthesis of single cell protein and metabolites are chemo-heterotrophic substrates. The growth and product yields are economically very important parameters. Therefore it is necessary to look for methods to optimize these biotechnological processes, i. e. to increase these values up to the theoretically possible limits. In the SCP production the growth yield is determined energetically and in the overflow production the yield is influenced by the amount of biologically useful energy which is produced during the product synthesis. It is demonstrated that the auxiliary substrate concept is appropriate to improving the yield both for SCP- und product synthesis. In the SCP synthesis two (or more than two) substrates must be mixed that way that the biologically useful energy, which is generated along the way from substrates to a central precusor for the cell substance synthesis, becomes a maximum thus no further substrate need to be oxidized merely for the purpose of energy generation. By using a substrate, which operates only as an energy donor in the mixture the carbon metabolism determined upper limit of the carbon conversion efficiency can be attained. For with the overflow production of metabolites the biologically useful energy seems to be responsible for the discrepancy between the metabolism-determined product yield and the experimentally obtained one, the energy liberated during the production of primary metabolites must be kept low. This might be reached by using substrate mixtures. Furthermore it is shown that in this way the specific production rate can be improved as well.

[1]  A. H. Stouthamer A theoretical study on the amount of ATP required for synthesis of microbial cell material , 2007, Antonie van Leeuwenhoek.

[2]  W. Babel,et al.  Flow of 14C-methanol via assimilatory and dissimilatory sequences with yeast in presence of glucose , 1985, Archives of Microbiology.

[3]  P. M. Bruinenberg,et al.  Utilization of formate as an additional energy source by glucose-limited chemostat cultures ofCandida utilis CBS 621 andSaccharomyces cerevisiae CBS 8066 , 1985, Archives of Microbiology.

[4]  W. Babel,et al.  Correlation between cell composition and carbon conversion efficiency in microbial growth: a theoretical study , 1985, Applied Microbiology and Biotechnology.

[5]  J. G. Kuenen,et al.  Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi) , 1985, Journal of bacteriology.

[6]  C. A. Fewson Growth Yields and Respiratory Efficiency of Acinetobacter calcoaceticus , 1985 .

[7]  W. Babel,et al.  The influence of carbon catabolism on the auxiliary substrate effect, Paper given at the Reinhardsbrunn Symposium “Phyusiology of Microbial Growth and Differentiation”, May 20–26, 1984 , 1985 .

[8]  W. Babel,et al.  Mixed Substrate Utilization in Micro-organisms: Biochemical Aspects and Energetics , 1985 .

[9]  W. Fritsche,et al.  Nature and significance of microbial cometabolism of xenobiotics , 1985, Journal of basic microbiology.

[10]  W. Babel,et al.  Verbesserung der Y-Werte bei Wachstum von Hansenula polymorpha auf Methanol durch simultane verwertung von Glucose , 1983 .

[11]  W. Babel,et al.  [Improvement of Y-values of Hansenula polymorpha growth on methanol by simultaneous utilization of glucose]. , 1983, Zeitschrift fur allgemeine Mikrobiologie.

[12]  C. Anthony,et al.  The Biochemistry of Methylotrophs , 1982 .

[13]  W. Fritsche H. J. Rehm (Herausgeber), Biotechnologie (23 Vorträge, gehalten anläßlich des Symposiums in Tutzing, März 1977—DECHEMA‐Monographie, Band 81). Weinheim‐New York 1977. Verlag Chemie , 1980 .

[14]  W. Babel Mischsubstratfermentation – ein energetisch begründetes Konzept , 1980 .

[15]  W. Babel Bewertung von Substraten für das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/Energie-Verhältnisses† , 1979 .

[16]  W. Babel [Evaluation of substrates for microbial growth on the basis of their carbon/energy ratio]. , 1979, Zeitschrift fur allgemeine Mikrobiologie.

[17]  A. Christner Spezifische Produktbildungsraten von mikrobiellen Produktbildnern , 1976 .

[18]  A. Christner [Specific product formation rates of microbial producers]. , 1976, Zeitschrift fur allgemeine Mikrobiologie.