Bifurcation of limit cycles near polycycles with n vertices

Abstract In the study of Hilbert 16th problem the most difficult part is to find the maximal number of limit cycles appearing near a polycycle by perturbations. In this paper we study the bifurcation of limit cycles near a polycycle with n hyperbolic saddle points. We obtain a sufficient condition for the polycycle to generate at least n limit cycles. We also establish a necessary and sufficient condition for the existence of a separatrix connecting any two saddle points.

[1]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[2]  Zhujun Jing,et al.  Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms , 2000 .

[3]  Ping Bi,et al.  Bifurcation of limit cycles and separatrix loops in singular Lienard systems , 2004 .

[4]  Robert Roussarie,et al.  On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields , 1986 .

[5]  Y. Ilyashenko,et al.  Finitely-smooth normal forms of local families of diffeomorphisms and vector fields , 1991 .

[6]  A. Mourtada,et al.  Degenerate and Non-trivial Hyperbolic Polycycles with Two Vertices , 1994 .

[7]  Freddy Dumortier,et al.  Elementary graphics of cyclicity 1 and 2 , 1994 .

[8]  A. Mourtada,et al.  Algorithmes formels appliqu?s ? l'?tude de la cyclicit? d'un polycycle alg?brique g?n?rique ? quatre sommets hyperboliques , 1997 .

[9]  Alberto Tesi,et al.  On the computation of characteristic multipliers for predicting limit cycle bifurcations , 1998 .

[10]  Han Maoan,et al.  Cyclicity 1 and 2 Conditions for a 2-Polycycle of Integrable Systems on the Plane☆ , 1999 .

[11]  Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude , 1991 .

[12]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[13]  M Han BIFURCATIONS OF LIMIT CYCLES FROM A HETEROCLINIC CYCLE OF HAMILTONIAN SYSTEMS , 1998 .

[14]  Xiaochun Hong,et al.  Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term , 2002 .

[15]  J. Walker,et al.  Book Reviews : THEORY OF BIFURCATIONS OF DYNAMIC SYSTEMS ON A PLANE A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier J. Wiley & Sons, New York , New York (1973) , 1976 .

[16]  M El Morsalani,et al.  Degenerate and non-trivial hyperbolic 2-polycycles: appearance of two independent Ecalle-Roussarie compensators and Khovanskii's theory , 1994 .