Surrogate-based modeling of cryogenic turbulent cavitating flows

The cryogenic cavitation has critical implications on the performance and safety of liquid rocket engines. In this study, a systematic investigation based on the surrogate modeling techniques is conducted to assess and improve the performance of a transport-based cryogenic cavitation model. Based on the surrogate model, global sensitivity analysis is be conducted to assess the role of model parameters regulating the condensation and evaporation rates, and uncertainties in material properties, specifically, the vapor density and latent heat. The surrogate models considered include the response surface, radial basis neural network, Kriging, and a weighted average composite model combining all surrogates. It is revealed that the vapor density and the model parameter controlling the evaporation rate are more critical than latent heat and the model parameter controlling the condensation rate. Based on the recommended model parameter values, better prediction of the cryogenic turbulent cavitation can be attained.

[1]  Albert Ruprecht,et al.  Very Large Eddy Simulation for the Prediction of Unsteady Vortex Motion , 2004 .

[2]  C. Merkle,et al.  Numerical Modeling of the Thermodynamic Effects of Cavitation , 1997 .

[3]  G. Matheron Principles of geostatistics , 1963 .

[4]  W. Shyy,et al.  Modeling for isothermal and cryogenic cavitation , 2010 .

[5]  Robert F. Kunz,et al.  A preconditioned navier-stokes method for two-phase flows with application to Cavitation prediction , 1999 .

[6]  Wei Shyy,et al.  Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion , 2005 .

[7]  Wei Shyy,et al.  Filter-based unsteady RANS computations , 2004 .

[8]  J. Hord,et al.  Cavitation in liquid cryogens. 2: Hydrofoil , 1973 .

[9]  Stephen D. Heister,et al.  A Numerical Treatment for Attached Cavitation , 1994 .

[10]  R. Haftka,et al.  Surrogate model‐based strategy for cryogenic cavitation model validation and sensitivity evaluation , 2008 .

[11]  Nan-Suey Liu,et al.  Turbulence modeling for very large-eddy simulation , 2006 .

[12]  Shahrouz Aliabadi,et al.  Simulation of Hydrodynamic Cavitating Flows Using Stabilized Finite Element Method , 2005 .

[13]  Wei Shyy,et al.  Interfacial dynamics‐based modelling of turbulent cavitating flows, Part‐1: Model development and steady‐state computations , 2004 .

[14]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[15]  Saltelli Andrea,et al.  Sensitivity Analysis for Nonlinear Mathematical Models. Numerical ExperienceSensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience , 1995 .

[16]  C. Merkle,et al.  Computational modeling of the dynamics of sheet cavitation , 1998 .

[17]  Wei Shyy,et al.  Computational Techniques for Complex Transport Phenomena: Two-Equation Turbulence Models with Nonequilibrium, Rotation, and Compressibility Effects , 1997 .

[18]  Maria Grazia De Giorgi,et al.  Experimental and Numerical Investigations of Cavitating Flows , 2005 .

[19]  M. McLinden,et al.  NIST Standard Reference Database 23 - NIST Thermodynamic and Transport Properties REFPROP, Version 7.0 , 2002 .

[20]  Wei Shyy,et al.  Turbulence Modeling for Isothermal and Cryogenic Cavitation , 2009 .

[21]  B. Launder,et al.  THE NUMERICAL COMPUTATION OF TURBULENT FLOW , 1974 .

[22]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[23]  J. Mark Introduction to radial basis function networks , 1996 .

[24]  W. Shyy,et al.  Interfacial dynamics‐based modelling of turbulent cavitating flows, Part‐2: Time‐dependent computations , 2004 .

[25]  A. K. Singhal,et al.  Mathematical Basis and Validation of the Full Cavitation Model , 2002 .