Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus.

[1]  A. Stenlund,et al.  Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding , 2000, The EMBO journal.

[2]  A. Stenlund,et al.  Two Patches of Amino Acids on the E2 DNA Binding Domain Define the Surface for Interaction with E1 , 2000, Journal of Virology.

[3]  V. Wilson,et al.  Identification of a Short, Hydrophilic Amino Acid Sequence Critical for Origin Recognition by the Bovine Papillomavirus E1 Protein , 2000, Journal of Virology.

[4]  M. Valle,et al.  Large T-Antigen Double Hexamers Imaged at the Simian Virus 40 Origin of Replication , 2000, Molecular and Cellular Biology.

[5]  J. Peto,et al.  Human papillomavirus is a necessary cause of invasive cervical cancer worldwide , 1999, The Journal of pathology.

[6]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[7]  M. Botchan,et al.  Biochemical and Electron Microscopic Image Analysis of the Hexameric E1 Helicase* , 1999, The Journal of Biological Chemistry.

[8]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[9]  L. Chow,et al.  Human Papillomavirus DNA Replication , 1999, The Journal of Biological Chemistry.

[10]  C. M. Sanders,et al.  Recruitment and loading of the E1 initiator protein: an ATP‐dependent process catalysed by a transcription factor , 1998, The EMBO journal.

[11]  L Beardsley,et al.  Natural history of cervicovaginal papillomavirus infection in young women. , 1998, The New England journal of medicine.

[12]  M. Stanley,et al.  A C-Terminal Helicase Domain of the Human Papillomavirus E1 Protein Binds E2 and the DNA Polymerase α-Primase p68 Subunit , 1998, Journal of Virology.

[13]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[14]  A. Stenlund,et al.  The Papillomavirus E1 Protein Forms a DNA-Dependent Hexameric Complex with ATPase and DNA Helicase Activities , 1998, Journal of Virology.

[15]  J. Darnell,et al.  Crystal Structure of a Tyrosine Phosphorylated STAT-1 Dimer Bound to DNA , 1998, Cell.

[16]  A. Stenlund,et al.  Characterization of the DNA-Binding Domain of the Bovine Papillomavirus Replication Initiator E1 , 1998, Journal of Virology.

[17]  R. Burk,et al.  Natural history of cervicovaginal papillomavirus infection in young women , 1998 .

[18]  L. Bird,et al.  Helicases: a unifying structural theme? , 1998, Current opinion in structural biology.

[19]  P. Lambert,et al.  Bovine papillomavirus type 1 E1 and simian virus 40 large T antigen share regions of sequence similarity required for multiple functions , 1997, Journal of virology.

[20]  A. Stenlund,et al.  Binding of the E1 and E2 proteins to the origin of replication of bovine papillomavirus , 1997, Journal of virology.

[21]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[22]  G. Kleywegt,et al.  Detecting folding motifs and similarities in protein structures. , 1997, Methods in enzymology.

[23]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[24]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[25]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[26]  G. Myers,et al.  The E 1 Proteins , 1997 .

[27]  G J Kleywegt,et al.  Phi/psi-chology: Ramachandran revisited. , 1996, Structure.

[28]  D. Sanford,et al.  Solution structure of the origin DNA-binding domain of SV40 T-antigen , 1996, Nature Structural Biology.

[29]  M. Botchan,et al.  Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication , 1996, Journal of virology.

[30]  J. D. Benson,et al.  Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions , 1996, Journal of virology.

[31]  K. Bjornson,et al.  Mechanisms of helicase-catalyzed DNA unwinding. , 1996, Annual review of biochemistry.

[32]  P. Sigler,et al.  Structure of NF-κB p50 homodimer bound to a κB site , 1998, Nature.

[33]  A. Stenlund,et al.  Co‐operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. , 1995, The EMBO journal.

[34]  J. D. Benson,et al.  Amino-terminal domains of the bovine papillomavirus type 1 E1 and E2 proteins participate in complex formation , 1995, Journal of virology.

[35]  E. Egelman,et al.  Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Bonne-Andrea,et al.  Bovine papillomavirus E1 protein binds specifically DNA polymerase alpha but not replication protein A , 1995, Journal of virology.

[37]  Gregory L. Verdine,et al.  Structure of the NF-κB p50 homodimer bound to DNA , 1995, Nature.

[38]  S. Harrison,et al.  Structure of the NF-kappa B p50 homodimer bound to DNA. , 1995, Nature.

[39]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[40]  M. Botchan,et al.  The bovine papilloma virus E1 protein has ATPase activity essential to viral DNA replication and efficient transformation in cells. , 1994, Virology.

[41]  T. Gillette,et al.  Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the viral E1 and E2 proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Hurwitz,et al.  The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  M. Botchan,et al.  The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[46]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[47]  M. Botchan,et al.  DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects , 1993, Journal of virology.

[48]  M. Botchan,et al.  The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Hurwitz,et al.  Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Hurwitz,et al.  Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Grossman,et al.  Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DMA-binding domain bound to its DNA target , 1992, Nature.

[52]  P. Howley,et al.  Transient replication of human papillomavirus DNAs , 1992, Journal of virology.

[53]  T. R. Broker,et al.  Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[55]  M. Ustav,et al.  Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. , 1991, The EMBO journal.

[56]  M. Botchan,et al.  Activation of BPV-1 replication in vitro by the transcription factor E2 , 1991, Nature.

[57]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[58]  J. Ludes-Meyers,et al.  A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA , 1991, Journal of virology.

[59]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[60]  M. Ustav,et al.  Transient replication of BPV‐1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. , 1991, The EMBO journal.

[61]  M. Botchan,et al.  Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. , 1990, Science.

[62]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[63]  D. Simmons,et al.  Mapping of helicase and helicase substrate-binding domains on simian virus 40 large T antigen , 1990, Journal of virology.

[64]  P. Hough,et al.  ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication , 1989, Nature.

[65]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[66]  I. Seif,et al.  A common function for polyoma virus large-T and papillomavirus E1 proteins? , 1984, Nature.