Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems

The LuxS enzyme, an S-ribosyl-homocysteine lyase, catalyzes the production of the signal precursor for autoinducer-2 mediated quorum sensing (QS-2) in Vibrio. Its widespread occurrence among bacteria is often considered the evidence for a universal language for interspecies communication. Presence of the luxS gene and production of the autoinducer-2 (AI-2) signal have repeatedly been the only evidences presented to assign a functional QS-2 to the most diverse species. In fact, LuxS has a primary metabolic role as part of the activated methyl cycle. In this review we have analyzed the distribution of QS-2 related genes in Enterobacteriaceae by moving the focus of the investigation from AI-2 production to the detection of potential AI-2 receptors. The latter are common in pathogens or endosymbionts of animals, but were also found in a limited number of Enterobacteriaceae of the genera Enterobacter, Klebsiella, and Pantoea that live in close association with plants or fungi. Although a precise function of QS-2 in these species has not been identified, they all show an endophytic or endosymbiontic lifestyle that suggests a role of type-2 quorum sensing in the adaptation to closed ecosystems.

[1]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[2]  T. H. Smits,et al.  Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. , 2010, Molecular plant-microbe interactions : MPMI.

[3]  Jibin Sun,et al.  Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways , 2004, BMC Evolutionary Biology.

[4]  Alexander Goesmann,et al.  Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity , 2010, BMC Genomics.

[5]  Bonnie L. Bassler,et al.  Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi , 2004, Journal of bacteriology.

[6]  B. Bassler,et al.  Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway , 1994, Molecular microbiology.

[7]  S. D. De Keersmaecker,et al.  Let LuxS speak up in AI-2 signaling. , 2006, Trends in microbiology.

[8]  K. Ottemann,et al.  Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. , 2011, Microbiology.

[9]  Thomas K. Wood,et al.  YdgG (TqsA) Controls Biofilm Formation in Escherichia coli K-12 through Autoinducer 2 Transport , 2006, Journal of bacteriology.

[10]  B. Stevenson,et al.  Quorum sensing by the Lyme disease spirochete. , 2003, Microbes and infection.

[11]  Bonnie L. Bassler,et al.  The major Vibrio cholerae autoinducer and its role in virulence factor production , 2007, Nature.

[12]  Marcelo P. Sircili,et al.  AI-3 Synthesis Is Not Dependent on luxS in Escherichia coli , 2006, Journal of bacteriology.

[13]  Fengquan Liu,et al.  The luxS Gene Is Involved in AI-2 Production, Pathogenicity, and Some Phenotypes in Erwinia amylovora , 2008, Current Microbiology.

[14]  Bonnie L Bassler,et al.  Small Talk Cell-to-Cell Communication in Bacteria , 2002, Cell.

[15]  Vanessa Sperandio,et al.  Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two‐component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli , 2002, Molecular microbiology.

[16]  B. Bassler,et al.  Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence , 1993, Molecular microbiology.

[17]  D. Allison,et al.  Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication , 1995, Journal of bacteriology.

[18]  R. Lamont,et al.  The Actinobacillus actinomycetemcomitans Ribose Binding Protein RbsB Interacts with Cognate and Heterologous Autoinducer 2 Signals , 2006, Infection and Immunity.

[19]  M. Inouye,et al.  MqsR, a Crucial Regulator for Quorum Sensing and Biofilm Formation, Is a GCU-specific mRNA Interferase in Escherichia coli* , 2009, The Journal of Biological Chemistry.

[20]  R. Lamont,et al.  Autoinducer 2 Is Required for Biofilm Growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans , 2007, Infection and Immunity.

[21]  Young Ran Kim,et al.  Regulation of Vibrio vulnificus virulence by the LuxS quorum‐sensing system , 2003, Molecular microbiology.

[22]  Complete Genome Sequence of Clinical Isolate Pantoea ananatis LMG 5342 , 2012, Journal of bacteriology.

[23]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[24]  Thomas K. Wood,et al.  Autoinducer 2 Controls Biofilm Formation in Escherichia coli through a Novel Motility Quorum-Sensing Regulator (MqsR, B3022) , 2006, Journal of bacteriology.

[25]  B. Bassler,et al.  A genetic analysis of the function of LuxO, a two‐component response regulator involved in quorum sensing in Vibrio harveyi , 1999, Molecular microbiology.

[26]  Kim D Janda,et al.  Synthesis and biological validation of a ubiquitous quorum-sensing molecule. , 2004, Angewandte Chemie.

[27]  S. C. Winans Bacterial Esperanto , 2002, Nature Structural Biology.

[28]  L. Passador,et al.  Cell-to-Cell Communication in Bacteria , 2005 .

[29]  Francoise M. Blachere,et al.  Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere , 1998 .

[30]  Genome Sequence of Pantoea ananatis LMG20103, the Causative Agent of Eucalyptus Blight and Dieback , 2010, Journal of bacteriology.

[31]  C. Fuqua,et al.  Biofilm formation by plant-associated bacteria. , 2007, Annual review of microbiology.

[32]  K. Raffa,et al.  Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. , 2009 .

[33]  F. Rezzonico,et al.  Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria , 2008, BMC Microbiology.

[34]  G. Duménil,et al.  Tissue microbiology emerging. , 2012, Current opinion in microbiology.

[35]  B. Bassler,et al.  Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI-2 in Escherichia coli , 2005, Journal of bacteriology.

[36]  Klaus Winzer,et al.  Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria , 2005, Nature Reviews Microbiology.

[37]  M. Blaser,et al.  Detection of a luxS-Signaling Molecule in Bacillus anthracis , 2003, Infection and Immunity.

[38]  Bonnie L. Bassler,et al.  Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae , 2002, Cell.

[39]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[40]  F. Kunst,et al.  Whole-Genome Comparison between Photorhabdus Strains To Identify Genomic Regions Involved in the Specificity of Nematode Interaction , 2006, Journal of bacteriology.

[41]  Jun Li,et al.  Quorum Sensing in Escherichia coli Is Signaled by AI-2/LsrR: Effects on Small RNA and Biofilm Architecture , 2007, Journal of bacteriology.

[42]  J. Vangronsveld,et al.  Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638 , 2010, PLoS genetics.

[43]  E. Laasik,et al.  Type II quorum sensing regulates virulence in Erwinia carotovora ssp. carotovora. , 2006, FEMS microbiology letters.

[44]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[45]  K. Xavier,et al.  Identification of Functional LsrB-Like Autoinducer-2 Receptors , 2009, Journal of bacteriology.

[46]  Liping Zhao,et al.  Staphylococcus aureus AI-2 Quorum Sensing Associates with the KdpDE Two-Component System To Regulate Capsular Polysaccharide Synthesis and Virulence , 2010, Infection and Immunity.

[47]  M. Saier,et al.  Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. , 2005, Biochemical Society transactions.

[48]  Shawn R Campagna,et al.  Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. , 2004, Molecular cell.

[49]  Richard A. Juneau,et al.  RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86‐028NP , 2011, Molecular microbiology.

[50]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[51]  R. Lamont,et al.  Differential Interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB Proteins with Autoinducer 2 , 2007, Journal of bacteriology.

[52]  A. Jayaraman,et al.  Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2 , 2008, Applied Microbiology and Biotechnology.

[53]  S. Kuhara,et al.  Genome Sequence of Pantoea agglomerans Strain IG1 , 2012, Journal of bacteriology.

[54]  A. Jayaraman,et al.  Chemotaxis to the Quorum-Sensing Signal AI-2 Requires the Tsr Chemoreceptor and the Periplasmic LsrB AI-2-Binding Protein , 2010, Journal of bacteriology.

[55]  M. Ribbe,et al.  Nitrogen Fixation , 2011, Methods in Molecular Biology.

[56]  G. Stacey,et al.  Quorum sensing in plant-associated bacteria. , 2002, Current opinion in plant biology.

[57]  Bonnie L. Bassler,et al.  Interference with AI-2-mediated bacterial cell–cell communication , 2005, Nature.

[58]  Whasun O. Chung,et al.  Intra- and Interspecies Regulation of Gene Expression by Actinobacillus actinomycetemcomitansLuxS , 2001, Infection and Immunity.

[59]  E. Meighen,et al.  Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. , 1989, The Journal of biological chemistry.

[60]  R. Geffers,et al.  Autoinducer-2-Regulated Genes in Streptococcus mutans UA159 and Global Metabolic Effect of the luxS Mutation , 2007, Journal of bacteriology.

[61]  B. Bassler,et al.  Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. , 2007, Genes & development.

[62]  Ned S Wingreen,et al.  Quantifying the Integration of Quorum-Sensing Signals with Single-Cell Resolution , 2009, PLoS biology.

[63]  Edward G. Ruby,et al.  Vibrio fischeri Uses Two Quorum-Sensing Systems for the Regulation of Early and Late Colonization Factors , 2005, Journal of bacteriology.

[64]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[65]  S. Diggle,et al.  Rules of engagement: defining bacterial communication. , 2012, Current opinion in microbiology.

[66]  R. Dickey,et al.  Emended Description of Enterobacter cancerogenus comb. nov. (Formerly Erwinia cancerogena) , 1988 .

[67]  F. Rezzonico,et al.  Evolutionary insights from Erwinia amylovora genomics. , 2011, Journal of biotechnology.

[68]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[69]  K. Marchal,et al.  The small regulatory RNA molecule MicA is involved in Salmonella enterica serovar Typhimurium biofilm formation , 2010, BMC Microbiology.

[70]  K. Fong,et al.  luxS and arcB Control Aerobic Growth of Actinobacillus actinomycetemcomitans under Iron Limitation , 2003, Infection and Immunity.

[71]  Paulo B. Correia,et al.  Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer‐2 , 2012, Molecular microbiology.

[72]  B. Bassler,et al.  Quorum Sensing Regulates Type III Secretion in Vibrio harveyi and Vibrio parahaemolyticus , 2004, Journal of bacteriology.

[73]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[74]  Complete Genome Sequence of the Rice Pathogen Pantoea ananatis Strain PA13 , 2012, Journal of bacteriology.

[75]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[76]  M. Taga,et al.  Sinorhizobium meliloti, a bacterium lacking the autoinducer‐2 (AI‐2) synthase, responds to AI‐2 supplied by other bacteria , 2008, Molecular microbiology.

[77]  E. Greenberg,et al.  Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi , 1997, Journal of bacteriology.

[78]  B. Bassler,et al.  The LuxS‐dependent autoinducer AI‐2 controls the expression of an ABC transporter that functions in AI‐2 uptake in Salmonella typhimurium , 2001, Molecular microbiology.

[79]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[80]  T. H. Smits,et al.  Genome Sequence of the Biocontrol Agent Pantoea vagans Strain C9-1 , 2010, Journal of bacteriology.

[81]  M. Surette,et al.  Communication in bacteria: an ecological and evolutionary perspective , 2006, Nature Reviews Microbiology.

[82]  G. Salmond,et al.  Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. , 2006, Molecular plant pathology.

[83]  Thomas G. Platt,et al.  What's in a name? The semantics of quorum sensing. , 2010, Trends in microbiology.

[84]  T. Tenson,et al.  The Escherichia coli mqsR and ygiT Genes Encode a New Toxin-Antitoxin Pair , 2010, Journal of bacteriology.

[85]  E. Krin,et al.  Autoinducer 2 Affects Biofilm Formation by Bacillus cereus , 2006, Applied and Environmental Microbiology.

[86]  R. Johnstone,et al.  Animal signals , 2013, Current Biology.

[87]  M. Surette,et al.  Regulation of autoinducer production in Salmonella typhimurium , 1999, Molecular microbiology.

[88]  D. Milton Quorum sensing in vibrios: complexity for diversification. , 2006, International journal of medical microbiology : IJMM.

[89]  L. Hor,et al.  Regulation of Metalloprotease Gene Expression in Vibrio vulnificus by a Vibrio harveyi LuxR Homologue , 2001, Journal of bacteriology.

[90]  Michael B. Jenkins,et al.  Nitrogen Fixation, 3rd Edition , 2000 .

[91]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[92]  B. Bassler,et al.  A genetic analysis of the functions of LuxN: a two‐component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi , 2000, Molecular microbiology.

[93]  D. Sturdevant,et al.  AI-2-dependent gene regulation in Staphylococcus epidermidis , 2008, BMC Microbiology.

[94]  G. Salmond,et al.  Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[95]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[96]  Qin Zhou,et al.  Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. , 2011, International journal of systematic and evolutionary microbiology.

[97]  A. Danchin,et al.  Pleiotropic Role of Quorum-Sensing Autoinducer 2 in Photorhabdus luminescens , 2006, Applied and Environmental Microbiology.

[98]  F. Rezzonico,et al.  The role of luxS in the fire blight pathogen Erwinia amylovora is limited to metabolism and does not involve quorum sensing. , 2007, Molecular plant-microbe interactions : MPMI.

[99]  K. Janda,et al.  A multivalent probe for AI-2 quorum-sensing receptors. , 2011, Journal of the American Chemical Society.

[100]  Arul Jayaraman,et al.  Flow-Based Microfluidic Device for Quantifying Bacterial Chemotaxis in Stable, Competing Gradients , 2009, Applied and Environmental Microbiology.

[101]  E. Ruby,et al.  Vibrio fischeri LuxS and AinS: Comparative Study of Two Signal Synthases , 2004, Journal of bacteriology.

[102]  B. Bassler,et al.  Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets , 2012, Molecular microbiology.

[103]  Nicola C. Reading,et al.  Quorum sensing: the many languages of bacteria. , 2006, FEMS microbiology letters.

[104]  P. Williams,et al.  A distinctive dual‐channel quorum‐sensing system operates in Vibrio anguillarum , 2004, Molecular microbiology.

[105]  E. Greenberg,et al.  A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[106]  G. Dougan,et al.  Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray , 2003, Journal of bacteriology.

[107]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[108]  Kim R Hardie,et al.  LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. , 2003, Advances in applied microbiology.

[109]  K. Marchal,et al.  The AI-2-dependent regulator LsrR has a limited regulon in Salmonella Typhimurium , 2010, Cell Research.

[110]  Nevin D. Young,et al.  OrthoParaMap: Distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies , 2003, BMC Bioinformatics.

[111]  David M. Stevenson,et al.  Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants , 2009, Science.