Experimental quantum multiparty communication protocols

Quantum information science breaks limitations of conventional information transfer, cryptography and computation by using quantum superpositions or entanglement as resources for information processing. Here, we report on the experimental realization of three-party quantum communication protocols using single three-level quantum system (qutrit) communication: secret sharing, detectable Byzantine agreement, and communication complexity reduction for a three-valued function. We have implemented these three schemes using the same optical fiber interferometric setup. Our realization is easily scalable without sacrificing detection efficiency or generating extremely complex many-particle entangled states.

[1]  M Fitzi,et al.  Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.

[2]  A. Cabello Solving the liar detection problem using the four-qubit singlet state , 2002, quant-ph/0210079.

[3]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[4]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[5]  Armin Tavakoli,et al.  Quantum Secret Sharing with a Single d-level System , 2015, ArXiv.

[6]  Armin Tavakoli,et al.  Quantum Clock Synchronization with a Single Qudit , 2015, Scientific Reports.

[7]  Marek Zukowski,et al.  Quantum communication complexity protocol with two entangled qutrits. , 2002, Physical review letters.

[8]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[9]  P. M. Melliar-Smith,et al.  Synchronizing clocks in the presence of faults , 1985, JACM.

[10]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[11]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[12]  ZEILINGERα,et al.  QUEST FOR GHZ STATES , 2013 .

[13]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[14]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[17]  Armin Tavakoli,et al.  Quantum Communication Complexity using the Quantum Zeno Effect , 2015, 1507.01936.

[18]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[19]  Guang Ping He,et al.  Comment on "experimental single qubit quantum secret sharing". , 2007, Physical review letters.

[20]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[21]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[22]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[23]  Armin Tavakoli,et al.  Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.

[24]  Marek Zukowski,et al.  Experimental quantum communication complexity , 2005, quant-ph/0502066.

[25]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.