A fast and stable method for rotating spherical harmonic expansions

In this paper, we present a simple and efficient method for rotating a spherical harmonic expansion. This is a well-studied problem, arising in classical scattering theory, quantum mechanics and numerical analysis, usually addressed through the explicit construction of the Wigner rotation matrices. We show that rotation can be carried out easily and stably through ''pseudospectral'' projection, without ever constructing the matrix entries themselves. Existing fast algorithms, based on recurrence relations, are subject to a variety of instabilities, limiting the effectiveness of the approach for expansions of high degree.

[1]  M. A. Blanco,et al.  Evaluation of the rotation matrices in the basis of real spherical harmonics , 1997 .

[2]  Holger Dachsel,et al.  Fast and accurate determination of the Wigner rotation matrices in the fast multipole method. , 2006, The Journal of chemical physics.

[3]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[4]  K. Ruedenberg,et al.  Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion , 1998 .

[5]  J. Conoir,et al.  Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .

[6]  Martin Head-Gordon,et al.  Rotating around the quartic angular momentum barrier in fast multipole method calculations , 1996 .

[7]  Klaus Ruedenberg,et al.  Rotation and Translation of Regular and Irregular Solid Spherical Harmonics , 1973 .

[8]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[9]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[10]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[11]  E. Wigner Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren , 1931 .

[12]  James D. Louck,et al.  Angular Momentum in Quantum Physics: Theory and Application , 1984 .

[13]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[14]  D. Pinchon,et al.  Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes , 2007 .

[15]  Robert C Waag,et al.  A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators. , 2010, The Journal of the Acoustical Society of America.

[16]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[17]  Ramani Duraiswami,et al.  Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..

[18]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .