Subgradient Algorithm on Riemannian Manifolds

The subgradient method is generalized to the context of Riemannian manifolds. The motivation can be seen in non-Euclidean metrics that occur in interior-point methods. In that frame, the natural curves for local steps are the geodesies relative to the specific Riemannian manifold. In this paper, the influence of the sectional curvature of the manifold on the convergence of the method is discussed, as well as the proof of convergence if the sectional curvature is nonnegative.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[3]  R. Greene,et al.  Convex functions on complete noncompact manifolds: Topological structure , 1981 .

[4]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[5]  Krzysztof C. Kiwiel,et al.  An aggregate subgradient method for nonsmooth convex minimization , 1983, Math. Program..

[6]  D. Bayer,et al.  The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories , 1989 .

[7]  C. Lemaréchal Nondifferentiable optimization , 1989 .

[8]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[9]  Sehun Kim,et al.  Convergence of a generalized subgradient method for nondifferentiable convex optimization , 1991, Math. Program..

[10]  T. Rapcsák Geodesic convexity in nonlinear optimization , 1991 .

[11]  Convex programming on the Poincaré plane , 1992 .

[12]  Claude Lemaréchal,et al.  Convergence of some algorithms for convex minimization , 1993, Math. Program..

[13]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[14]  T. Rapcsák,et al.  Nonlinear coordinate representations of smooth optimization problems , 1995 .

[15]  A. Iusem,et al.  Full convergence of the steepest descent method with inexact line searches , 1995 .

[16]  Tamás Rapcsák,et al.  A class of polynomial variable metric algorithms for linear optimization , 1996, Math. Program..

[17]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.