Simulation of flow problems with moving mechanical components, fluid–structure interactions and two‐fluid interfaces

The application of a stabilized space-time finite element formulation to problems involving fluid-structure interactions and two-fluid interfaces is discussed. Two sample problems are presented and the method is validated by comparison with a test problem.

[1]  Thomas J. R. Hughes,et al.  Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations , 1983 .

[2]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[3]  Andrew Johnson Mesh generation and update strategies for parallel computation of flow problems with moving boundaries and interfaces , 1995 .

[4]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[5]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of viscous compressible flows based on the conservation and entropy variables formulations , 1993 .

[6]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[7]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[8]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[9]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[10]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[11]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[12]  W. Peake,et al.  The Lowest Resonant Frequency of a Water‐Loaded Circular Plate , 1954 .

[13]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[14]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[15]  S. Mittal,et al.  Massively parallel finite element computation of three dimensional flow problems , 1992 .

[16]  J. Achenbach Wave propagation in elastic solids , 1962 .

[17]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[18]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[19]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows between moving components , 1995 .

[20]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[21]  J. Z. Zhu,et al.  The finite element method , 1977 .

[22]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[23]  S. Mittal,et al.  A finite element study of incompressible flows past oscillating cylinders and aerofoils , 1992 .

[24]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[25]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[26]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[27]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[28]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .