Towards Explainable Recommendations of Resource Allocation Mechanisms in On-Demand Transport Fleets

[1]  Alain Cardon,et al.  On demand transport system's approach as a multi-agent planning problem , 2014, 2014 International Conference on Advanced Logistics and Transport (ICALT).

[2]  Michal Jakob,et al.  Market Mechanism Design for Profitable On-Demand Transport Services , 2015, ArXiv.

[3]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[4]  Alun D. Preece,et al.  Asking 'Why' in AI: Explainability of intelligent systems - perspectives and challenges , 2018, Intell. Syst. Account. Finance Manag..

[5]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[6]  Flavien Balbo,et al.  Generic model for resource allocation in transportation. Application to urban parking management , 2016 .

[7]  B. Nelson,et al.  Resource Requirements for Demand-Responsive Transportation Services , 2003 .

[8]  Richard F. Hartl,et al.  Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports , 2011, Comput. Oper. Res..

[9]  L. Kattan,et al.  Fair dynamic resource allocation in transit-based evacuation planning , 2018, Transportation Research Part C: Emerging Technologies.

[10]  Flavien Balbo,et al.  ORNInA: A Decentralized, Auction-based Multi-agent Coordination in ODT Systems , 2020 .

[11]  Tom Holvoet,et al.  Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems , 2012, GECCO '12.

[12]  Judith Masthoff,et al.  Designing and Evaluating Explanations for Recommender Systems , 2011, Recommender Systems Handbook.

[13]  Paul Dourish,et al.  Directive Explanations for Actionable Explainability in Machine Learning Applications , 2021, ACM Trans. Interact. Intell. Syst..

[14]  Weixiong Zhang,et al.  Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks , 2005, Artif. Intell..

[15]  Senka Krivic,et al.  Towards Explainable AI Planning as a Service , 2019, ArXiv.

[16]  Stéphane Galland,et al.  Comparison of Agent-based Simulation Frameworks for Unmanned Aerial Transportation Applications , 2018, ANT/SEIT.

[17]  Stéphane Galland,et al.  Explainable Multi-Agent Systems Through Blockchain Technology , 2019, EXTRAAMAS@AAMAS.

[18]  B. Sparks,et al.  DEALING WITH SERVICE FAILURES: THE USE OF EXPLANATIONS , 2009 .

[19]  Gilbert Laporte,et al.  The dial-a-ride problem: models and algorithms , 2006, Ann. Oper. Res..

[20]  Milind Tambe,et al.  Quality Guarantees on k-Optimal Solutions for Distributed Constraint Optimization Problems , 2007, IJCAI.

[21]  Zongzhi Li,et al.  A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability , 2016 .

[22]  Ismel Brito Rodriguez,et al.  Distributed constraint satisfaction , 2007 .

[23]  Flavien Balbo,et al.  A Generic Multi-Agent Model for Resource Allocation Strategies in Online On-Demand Transport with Autonomous Vehicles , 2021, AAMAS.

[24]  Terence General Chair-Moore Jason H. Soule,et al.  Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference companion , 2012 .

[25]  Niels A. H. Agatz,et al.  The Value of Optimization in Dynamic Ride-Sharing: A Simulation Study in Metro Atlanta , 2010 .

[26]  Stephan Winter,et al.  Simulating Demand-responsive Transportation: A Review of Agent-based Approaches , 2015 .

[27]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.