Compressive modeling of stationary autoregressive processes

Compressive covariance sampling (CCS) methods that estimate the correlation function from compressive measurements have achieved great compression rates lately. In stationary autoregressive (AR) processes, the power spectrum is fully determined by the AR parameters, and vice versa. Therefore, compressive estimation of AR parameters amounts to CCS for such signals. However, previous CCS methods typically do not fully exploit the structure of AR power spectra. On the other hand, traditional AR parameter estimation methods cannot be used when only a compressed version of the AR signal is observed. We propose a Bayesian algorithm for estimating AR parameters from compressed observations, using a Metropolis-Hastings sampler. Simulation results confirm the promising performance of the proposed method.

[1]  Christophe Andrieu,et al.  Bayesian curve fitting using MCMC with applications to signal segmentation , 2002, IEEE Trans. Signal Process..

[2]  T. V. D. Hagen,et al.  Why Yule-Walker should not be used for autoregressive modelling , 1996 .

[3]  Xiangjun Zhang,et al.  Adaptive structured recovery of compressive sensing via piecewise autoregressive modeling , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Yonina C. Eldar,et al.  Sub-Nyquist Sampling , 2011, IEEE Signal Processing Magazine.

[5]  Geert Leus,et al.  Wideband Spectrum Sensing From Compressed Measurements Using Spectral Prior Information , 2013, IEEE Transactions on Signal Processing.

[6]  Jean-Yves Tourneret,et al.  Joint Segmentation of Piecewise Constant Autoregressive Processes by Using a Hierarchical Model and a Bayesian Sampling Approach , 2006, IEEE Transactions on Signal Processing.

[7]  Yuri I. Abramovich,et al.  Two-Dimensional Multivariate Parametric Models for Radar Applications—Part I: Maximum-Entropy Extensions for Toeplitz-Block Matrices , 2008, IEEE Transactions on Signal Processing.

[8]  H. Akaike Power spectrum estimation through autoregressive model fitting , 1969 .

[9]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[10]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[11]  Jean-Yves Tourneret,et al.  Blind Deconvolution of Sparse Pulse Sequences Under a Minimum Distance Constraint: A Partially Collapsed Gibbs Sampler Method , 2012, IEEE Transactions on Signal Processing.

[12]  Geert Leus,et al.  Cooperative compressive power spectrum estimation , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[13]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[14]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[15]  Geert Leus,et al.  Compressive Wideband Power Spectrum Estimation , 2012, IEEE Transactions on Signal Processing.

[16]  Yuri I. Abramovich,et al.  Two-Dimensional Multivariate Parametric Models for Radar Applications—Part II: Maximum-Entropy Extensions for Hermitian-Block Matrices , 2008, IEEE Transactions on Signal Processing.

[17]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[18]  Piet M. T. Broersen,et al.  Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data , 2002, IEEE Trans. Instrum. Meas..