Magneto-electric couplings in Sr1−xMnxTi1−yMnyO3

We study the interactions between Mn impurities substituting for different cations in the incipient ferroelectric perovskite SrTiO3. Using the LSDA+U and many-body perturbation theory, we show that magnetic interactions J between off-centered Mn2+A ions substituting for Sr and inducing ferroelectric instability in the system is negligible. For the nearest neighbours |JAA/kB| < 5 K. We show that the interactions involving Mn4+B ions substituting for Ti are much larger (JAA ≪ JAB ≪ JBB). The dependence of JAB on Mn2+A position contributes to magnetoelectricity of the system. These findings are in accordance with recent experimental observations, and provide the key for understanding microscopic mechanisms of magnetoelectricity in manganese doped incipient ferroelectrics.

[1]  J. Woicik,et al.  X-ray absorption fine structure studies of Mn coordination in doped perovskite SrTiO3 , 2010 .

[2]  P. Vilarinho,et al.  Multiglass order and magnetoelectricity in Mn2+ doped incipient ferroelectrics , 2009 .

[3]  R. Hayn,et al.  Evidence for impurity-induced polar state in Sr1―xMnxTiO3 from density functional calculations , 2009 .

[4]  R. Hayn,et al.  Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations , 2009, 0904.0121.

[5]  P. Vilarinho,et al.  (Sr,Mn)TiO3—a magnetoelectrically coupled multiglass , 2008 .

[6]  P. Vilarinho,et al.  (Sr,Mn)TiO3: a magnetoelectric multiglass. , 2008, Physical review letters.

[7]  P. Vilarinho,et al.  Nonlinear dc electric-field dependence of the dielectric permittivity and cluster polarization of Sr1−xMnxTiO3 ceramics , 2007 .

[8]  P. Vilarinho,et al.  Electron spin resonance investigation of Mn 2 + ions and their dynamics in Mn-doped Sr Ti O 3 , 2007, cond-mat/0702692.

[9]  C. Fennie,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[10]  P. Vilarinho,et al.  Polar behavior in Mn-doped SrTiO3 ceramics , 2005 .

[11]  K. Koepernik,et al.  Density functional application to strongly correlated electron systems , 2003, cond-mat/0301558.

[12]  E. Cockayne,et al.  Energetics of Li atom displacements inK1−xLixTaO3:First-principles calculations , 2002, cond-mat/0212554.

[13]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[14]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[15]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[16]  Fujimori,et al.  Configuration-interaction description of transition-metal impurities in II-VI semiconductors. , 1993, Physical review. B, Condensed matter.

[17]  Saitoh,et al.  Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. , 1992, Physical review. B, Condensed matter.

[18]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[19]  M. Glinchuk,et al.  Dipole glass and ferroelectricity in random-site electric dipole systems , 1990 .

[20]  J. Bednorz,et al.  Sr 1-x Ca x TiO 3 : An XY Quantum Ferroelectric with Transition to Randomness , 1984 .

[21]  D. Rytz,et al.  Condensation of Random-Site Electric Dipoles: Li in KTaO_{3} , 1980 .

[22]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[23]  K. Müller Electron Paramagnetic Resonance of Manganese IV in SrTi O 3 , 1959 .