ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN PROBLEMS INVOLVING NON-LINEAR DIFFERENTIAL EQUATIONS CONTAINING A?SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVES

CONTENTS IntroductionChapter I. Asymptotically stable case. Asymptotic behaviour of the solution to the initial-value problem § 1. Passage to the limit in the Cauchy problem § 2. Construction of the asymptotic expansionChapter II. Asymptotically stable case. Problems that can be investigated on the basis of the asymptotic behaviour found for the Cauchy problem § 1. Two-point boundary-value problem. The solution for which, in the limit, z has a discontinuity at one end of the interval § 2. Two-point boundary-value problem. The solution for which, in the limit, z has a discontinuity at an interior point of the interval § 3. Problems with other supplementary conditions § 4. The solution for which, in the limit, y has a discontinuity at one end of the intervalChapter III. Hyperbolic case § 1. Periodic solutions § 2. Two-point boundary-value problem. The solution for which, in the limit, z has a discontinuity at the ends of the interval § 3. Two-point boundary-value problem. The solution for which, in the limit, z has a discontinuity at several interior points of the intervalReferences

[1]  George D. Birkhoff,et al.  On the asymptotic character of the solutions of certain linear differential equations containing a parameter , 1908 .

[2]  Über das Verhalten der Lösungen einer Folge von Differentialgleichungsproblemen, welche im Limes ausarten , 1935 .

[3]  Theory of linear differential equations containing a parameter , 1936 .

[4]  H. L. Turrittin Asymptotic Solutions of Certain Ordinary Differential Equations Associated with Multiple Roots of the Characteristic Equation , 1936 .

[5]  Mitio Nagumo Über die Differentialgleichung y"= ƒ(x, y, y') , 1937 .

[6]  Mitio Nagumo Über das Verhalten der Integrale von λy"+ƒ(x, y, y, 'λ)=0 fur λ→0 , 1939 .

[7]  W. Wasow On the Asymptotic Solution of Boundary Value Problems for Ordinary Differential Equations Containing a Parameter , 1944 .

[8]  K. O. Friedrichs,et al.  Singular perturbations of non-linear oscillations , 1946 .

[9]  N. Levinson,et al.  Perturbations of discontinuous solutions of non-linear systems of differential equations , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[10]  VII. ON THE CONSTRUCTION OF PERIODIC SOLUTIONS OF SINGULAR PERTURBATION PROBLEMS , 1950 .

[11]  A boundary value problem for a nonlinear differential equation with a small parameter , 1952 .

[12]  A A Dorodnicyn Asymptotic solution of Van Der Pol's equation , 1953 .

[13]  V. Ziegler,et al.  Vorlesungen über die Theorie der gewöhnlichen Differentialgleichungen , 1954 .

[14]  N. Levinson,et al.  Singular Perturbations of Non-Linear Systems of Differential Equations and an Associated Boundary Layer Equation , 1954 .

[15]  Jürgen Moser,et al.  Singular perturbation of eigenvalue problems for linear differential equations of even order , 1955 .

[16]  N. Levinson,et al.  Periodic Solutions of Singularly Perturbed Systems , 1955 .

[17]  H. Heinrich I. G. Petrowski (Prof. a. d. Lomonossow‐Univ. Moskau), Vorlesungen über die Theorie der gewöhnlichen Differentialgleichungen. 198 S. m. 27 Abb. Leipzig 1954. B. G. Teubner Verlagsgesellschaft. Preis geb. 7,80 DM , 1955 .

[18]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[19]  K. Friedrichs Asymptotic phenomena in mathematical physics , 1955 .

[20]  J. J. Levin Singular perturbations of nonlinear systems of differential equations related to conditional stability , 1956 .

[21]  W. Wasow,et al.  Singular perturbations of boundary value problems for nonlinear differential equations of the second order , 1956 .

[22]  J. J. Levin The asymptotic behavior of the stable initial manifolds of a system of nonlinear differential equations , 1957 .

[23]  A boundary value problem for a singularly perturbed differential equation , 1958 .