Laser pulse control of exciton dynamics in a biological chromophore complex

Femtosecond laser pulse control of exciton dynamics in a biological chromophore complex is studied theoretically. The computations use the optimal control theory specified to open quantum systems and formulated in the framework of the rotating wave approximation. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated. Details of exciton dynamics driven by a polarization shaped pulse are discussed.

[1]  V. May,et al.  Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. , 2004, The Journal of chemical physics.

[2]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[3]  Thomas Halfmann,et al.  Special issue on “Quantum control of light and matter”: In honor of the 70th birthday of Bruce Shore , 2006 .

[4]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[5]  V. May,et al.  Exciton exciton annihilation dynamics in chromophore complexes. I. Multiexciton density matrix formulation , 2003 .

[6]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[7]  Volkhard May,et al.  Controlling excitonic wavepacket motion in the PS1 core-antenna system , 2004 .

[8]  V. May,et al.  Application of optimal control theory to ultrafast nonresonant multiphoton transitions in polyatomic molecules , 2006 .

[9]  Volkhard May,et al.  Laser pulse control of ultrafast electron transfer reactions , 2001 .

[10]  S. Mukamel,et al.  Chirality-induced signals in coherent multidimensional spectroscopy of excitons. , 2006, The Journal of chemical physics.

[11]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[12]  Volkhard May,et al.  Femtosecond laser pulse control of electron transfer processes , 2002 .

[13]  Stuart A. Rice,et al.  Optical Control of Molecular Dynamics , 2000 .

[14]  Volkhard May,et al.  Ultrafast Laser Pulse Control of Exciton Dynamics: A Computational Study on the FMO Complex† , 2004 .

[15]  A. Cámara-Artigas,et al.  The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution , 2004, Photosynthesis Research.

[16]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[17]  R. Louwe,et al.  Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K. , 1998 .

[18]  Herschel Rabitz,et al.  Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory. , 2004, The Journal of chemical physics.

[19]  G Gerber,et al.  Quantum control by ultrafast polarization shaping. , 2004, Physical review letters.

[20]  Jennifer L. Herek Coherent control of photochemical and photobiological processes , 2006 .

[21]  Paul Brumer,et al.  Principles of the Quantum Control of Molecular Processes , 2003 .

[22]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[23]  J. Amesz,et al.  EXCITED STATE DYNAMICS IN FMO ANTENNA COMPLEXES FROM PHOTOSYNTHETIC GREEN SULFUR BACTERIA : A KINETIC MODEL , 1999 .