Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs
暂无分享,去创建一个
[1] Petros Dellaportas,et al. On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..
[2] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[3] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[4] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[5] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[6] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[7] David B. Dunson,et al. Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.
[8] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[9] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[10] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[11] G. Casella,et al. Penalized regression, standard errors, and Bayesian lassos , 2010 .
[12] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[13] Chris Hans,et al. Model uncertainty and variable selection in Bayesian lasso regression , 2010, Stat. Comput..
[14] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[15] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[16] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[17] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[18] Xiu Yang,et al. Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..
[19] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[20] J. Berger,et al. Optimal predictive model selection , 2004, math/0406464.
[21] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[22] D. Madigan,et al. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .
[23] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[24] G. Phillips. Interpolation and Approximation by Polynomials , 2003 .
[25] Adrian E. Raftery,et al. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .
[26] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[27] L. Mathelin,et al. A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .
[28] James Ferguson,et al. Multivariable Curve Interpolation , 1964, JACM.
[29] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[30] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[31] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[32] S. Godsill. On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty , 2001 .
[33] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[34] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[35] Lawrence Carin,et al. Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.
[36] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[37] Ioannis Ntzoufras,et al. On Bayesian lasso variable selection and the specification of the shrinkage parameter , 2012, Stat. Comput..
[38] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[39] G. Casella,et al. The Bayesian Lasso , 2008 .
[40] B. Mallick. VARIABLE SELECTION FOR REGRESSION MODELS , 2016 .
[41] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[42] Adrian E. Raftery,et al. Bayesian Model Averaging: A Tutorial , 2016 .
[43] D. Blackwell. Conditional Expectation and Unbiased Sequential Estimation , 1947 .