Integral Ricci curvature and the mass gap of Dirichlet Laplacians on domains

We obtain a fundamental gap estimate for classes of bounded domains with quantitative control on the boundary in a complete manifold with integral bounds on the negative part of the Ricci curvature. This extends the result of [15] to L-Ricci curvature assumptions, p > n/2. To achieve our result, it is shown that the domains under consideration are John domains, what enables us to obtain an estimate on the first nonzero Neumann eigenvalue, which is of independent interest.

[1]  Qi S. Zhang,et al.  Fundamental Gap of Convex Domains in the Spheres , 2017, American Journal of Mathematics.

[2]  Lili Wang,et al.  Sharp fundamental gap estimate on convex domains of sphere , 2016, Journal of Differential Geometry.

[3]  W. Wang Harnack inequality, heat kernel bounds and eigenvalue estimates under integral Ricci curvature bounds , 2020 .

[4]  Neumann Li-Yau gradient estimate under integral Ricci curvature bounds , 2017, 1710.08649.

[5]  S. Yau,et al.  GEOMETRIC ANALYSIS , 2005 .

[6]  Heat Kernel Upper Bound on Riemannian Manifolds with Locally Uniform Ricci Curvature Integral Bounds , 2016, 1601.07438.

[7]  Christian Rose,et al.  The Kato class on compact manifolds with integral bounds on the negative part of Ricci curvature , 2016, 1601.07441.

[8]  Guofang Wei,et al.  Neumann isoperimetric constant estimate for convex domains , 2016, 1612.05843.

[9]  P. Petersen,et al.  Relative Volume Comparison with Integral Curvature Bounds , 1997 .

[10]  X. Dai,et al.  Local Sobolev Constant Estimate for Integral Ricci Curvature Bounds , 2016, 1601.08191.

[11]  E. Aubry Finiteness of π1 and geometric inequalities in almost positive Ricci curvature , 2007 .

[12]  Qi S. Zhang,et al.  Li-Yau gradient bound for collapsing manifolds under integral curvature condition , 2016, 1607.05951.

[13]  Guofang Wei,et al.  Fundamental gap estimate for convex domains on sphere — the case $n=2$ , 2018, Communications in Analysis and Geometry.

[14]  Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain , 1997 .

[15]  K. Oden,et al.  Spectral gap estimates on compact manifolds , 1999 .

[16]  Xavier Ramos Oliv'e,et al.  Quantitative Sobolev Extensions and the Neumann Heat Kernel for Integral Ricci Curvature Conditions , 2020, The Journal of Geometric Analysis.

[17]  Hang Chen Chiti-type Reverse Hölder Inequality and Torsional Rigidity Under Integral Ricci Curvature Condition , 2021, Potential Analysis.

[18]  Ben Andrews,et al.  Proof of the fundamental gap conjecture , 2010, 1006.1686.

[19]  S. Gallot Isoperimetric inequalities based on integral norms of Ricci curvature , 1988 .

[20]  THE VANISHING OF THE FUNDAMENTAL GAP OF CONVEX DOMAINS IN H , 2021 .

[21]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[22]  P. Petersen,et al.  Analysis and geometry on manifolds with integral Ricci curvature bounds. II , 2000 .