The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes.

[1]  W. York,et al.  Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. , 2015, Carbohydrate research.

[2]  Alan W Walker,et al.  Phylogeny, culturing, and metagenomics of the human gut microbiota. , 2014, Trends in microbiology.

[3]  B. Henrissat,et al.  How do gut microbes break down dietary fiber? , 2014, Trends in biochemical sciences.

[4]  G. Michel,et al.  Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications , 2014, Applied Microbiology and Biotechnology.

[5]  R. Mackie,et al.  Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393 , 2014, Applied and Environmental Microbiology.

[6]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[7]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[8]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[9]  H. Gruppen,et al.  Comparison of xanthans by the relative abundance of its six constituent repeating units. , 2013, Carbohydrate polymers.

[10]  L. Ursell,et al.  Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota , 2013, Proceedings of the National Academy of Sciences.

[11]  Justin L Sonnenburg,et al.  A refined palate: bacterial consumption of host glycans in the gut. , 2013, Glycobiology.

[12]  Bernard Henrissat,et al.  Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome , 2013, PLoS biology.

[13]  Bernard Henrissat,et al.  The abundance and variety of carbohydrate-active enzymes in the human gut microbiota , 2013, Nature Reviews Microbiology.

[14]  G. Reid,et al.  If microbial ecosystem therapy can change your life, what's the problem? , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  E. Martens,et al.  Dynamic responses of Bacteroides thetaiotaomicron during growth on glycan mixtures , 2013, Molecular microbiology.

[16]  D. Mohnen,et al.  Evolving views of pectin biosynthesis. , 2013, Annual review of plant biology.

[17]  G. Gloor,et al.  Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut , 2013, Microbiome.

[18]  L. Brandt,et al.  Fecal microbiota transplantation: past, present and future , 2013, Current opinion in gastroenterology.

[19]  D. Hentges Human Intestinal Microflora in Health and Disease , 2012 .

[20]  A. Buléon,et al.  Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules , 2012, BMC Plant Biology.

[21]  A. Boraston,et al.  Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes , 2012, Proceedings of the National Academy of Sciences.

[22]  W. York,et al.  A Galacturonic Acid–Containing Xyloglucan Is Involved in Arabidopsis Root Hair Tip Growth[W] , 2012, Plant Cell.

[23]  B. Henrissat,et al.  Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5) , 2012, BMC Evolutionary Biology.

[24]  T. Smith,et al.  Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism* , 2012, The Journal of Biological Chemistry.

[25]  H. Gruppen,et al.  In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans , 2012 .

[26]  O. Zabotina Xyloglucan and Its Biosynthesis , 2012, Front. Plant Sci..

[27]  H. Flint,et al.  Microbial degradation of complex carbohydrates in the gut , 2012, Gut microbes.

[28]  S. Firbank,et al.  A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system , 2012, Proceedings of the National Academy of Sciences.

[29]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[30]  H. Flint,et al.  Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon , 2012, The ISME Journal.

[31]  J B L Hoekstra,et al.  The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus , 2012, Diabetes, obesity & metabolism.

[32]  F. V. van Eeuwijk,et al.  Genome-wide association studies for agronomical traits in a world wide spring barley collection , 2012, BMC Plant Biology.

[33]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[34]  G. Cornelis,et al.  The N-glycan Glycoprotein Deglycosylation Complex (Gpd) from Capnocytophaga canimorsus Deglycosylates Human IgG , 2011, PLoS pathogens.

[35]  R. Knight,et al.  Moving pictures of the human microbiome , 2011, Genome Biology.

[36]  J. Faith,et al.  Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice , 2011, Proceedings of the National Academy of Sciences.

[37]  J. German,et al.  Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans , 2011, PloS one.

[38]  B. Henrissat,et al.  A hierarchical classification of polysaccharide lyases for glycogenomics. , 2010, The Biochemical journal.

[39]  Michael A McGuckin,et al.  Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria , 2010, The American Journal of Gastroenterology.

[40]  Michael J Gidley,et al.  Heterogeneity in the chemistry, structure and function of plant cell walls. , 2010, Nature chemical biology.

[41]  C. Mayer,et al.  Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin and starch , 2010, Proceedings of the National Academy of Sciences.

[42]  R. Mackie,et al.  Transcriptomic Analyses of Xylan Degradation by Prevotella bryantii and Insights into Energy Acquisition by Xylanolytic Bacteroidetes* , 2010, The Journal of Biological Chemistry.

[43]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[44]  B. Haas,et al.  A Catalog of Reference Genomes from the Human Microbiome , 2010, Science.

[45]  J. Faith,et al.  Dissecting the in Vivo Metabolic Potential of Two Human Gut Acetogens , 2010, The Journal of Biological Chemistry.

[46]  K. Roberts Plant Cell Walls , 2010 .

[47]  G. Michel,et al.  Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota , 2010, Nature.

[48]  I. Graham,et al.  Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes , 2010, Proceedings of the National Academy of Sciences.

[49]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[50]  T. Smith,et al.  SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. , 2010, Structure.

[51]  Spencer J. Williams,et al.  Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. , 2010, Nature chemical biology.

[52]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[53]  R. Burton,et al.  (1,3;1,4)-beta-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. , 2009, Molecular plant.

[54]  Eric C. Martens,et al.  Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm , 2009, The Journal of Biological Chemistry.

[55]  Yoshiharu Nishiyama,et al.  Structure and properties of the cellulose microfibril , 2009, Journal of Wood Science.

[56]  I. Tanaka,et al.  Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron* , 2008, Journal of Biological Chemistry.

[57]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[58]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[59]  B. Henrissat,et al.  Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora , 2008, Chemistry & biology.

[60]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[61]  J. Gordon,et al.  Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. , 2008, Structure.

[62]  M. Hamady,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[63]  M. Sinnott,et al.  Carbohydrate Chemistry and Biochemistry: Structure and Mechanism , 2007 .

[64]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[65]  A. Boraston,et al.  Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. , 2007, Journal of molecular biology.

[66]  H. Flint,et al.  Selective colonization of insoluble substrates by human faecal bacteria. , 2007, Environmental microbiology.

[67]  A. Voragen,et al.  Bilberry xyloglucan--novel building blocks containing beta-xylose within a complex structure. , 2007, Carbohydrate research.

[68]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[69]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[70]  J. Ståhlberg,et al.  Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. , 2006, Journal of molecular biology.

[71]  A. Darvill,et al.  Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. , 2005, Carbohydrate research.

[72]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[73]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[74]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[75]  Yanping Wang,et al.  Human intestinal bacteria as reservoirs for antibiotic resistance genes. , 2004, Trends in microbiology.

[76]  P. Lerouge,et al.  Structural investigation of hemicellulosic polysaccharides from Argania spinosa: characterisation of a novel xyloglucan motif. , 2004, Carbohydrate research.

[77]  A. Darvill,et al.  Structure of the xyloglucan produced by suspension-cultured tomato cells. , 2003, Carbohydrate research.

[78]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[79]  A. Voragen,et al.  In vitro fermentability of differently substituted xylo-oligosaccharides. , 2002, Journal of agricultural and food chemistry.

[80]  T. Mattila-Sandholm,et al.  In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria , 2002 .

[81]  J. Vincken,et al.  Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. , 2001, Carbohydrate research.

[82]  Abigail A. Salyers,et al.  Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface ofBacteroides thetaiotaomicron , 2000, Journal of bacteriology.

[83]  A. Voragen,et al.  Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. , 2000, Journal of agricultural and food chemistry.

[84]  P Colonna,et al.  Starch granules: structure and biosynthesis. , 1998, International journal of biological macromolecules.

[85]  M. P. Bryant,et al.  Robert E. Hungate: pioneer of anaerobic microbial ecology. , 1997, Anaerobe.

[86]  F. Rombouts,et al.  Fermentation of xyloglucan by intestinal bacteria. , 1996 .

[87]  P. Albersheim,et al.  The structures of arabinoxyloglucans produced by solanaceous plants. , 1996, Carbohydrate research.

[88]  D. Stewart,et al.  Plant Cell Walls as Dietary Fibre: Range, Structure, Processing and Function , 1996 .

[89]  J. Roth,et al.  Virulence Mechanisms of Bacterial Pathogens , 1995 .

[90]  R. Hill Digestion of mucin polysaccharides in vitro by bacteria isolated from the rabbit cecum , 1986, Current Microbiology.

[91]  N. Mcneil The contribution of the large intestine to energy supplies in man. , 1984, The American journal of clinical nutrition.

[92]  S. Kominos,et al.  Evaluation of a pectin agar medium for isolation of Yersinia enterocolitica within 48 hours. , 1979, American journal of clinical pathology.

[93]  S. E. West,et al.  Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon , 1977, Applied and environmental microbiology.

[94]  S. E. West,et al.  Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon , 1977, Applied and environmental microbiology.

[95]  W. Moore,et al.  Human fecal flora: the normal flora of 20 Japanese-Hawaiians. , 1974, Applied microbiology.

[96]  R. Freter,et al.  Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. , 1969, Applied microbiology.

[97]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[98]  R. Freter EXPERIMENTAL ENTERIC SHIGELLA AND VIBRIO INFECTIONS IN MICE AND GUINEA PIGS , 1956, The Journal of experimental medicine.

[99]  C. J. Chamberlain The Cell Wall , 1907, Botanical Gazette.

[100]  M. Pauly,et al.  Hemicellulose biosynthesis , 2013, Planta.

[101]  P. Lawson,et al.  Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. , 2012, International journal of systematic and evolutionary microbiology.

[102]  Peter Ulvskov,et al.  Hemicelluloses. , 2010, Annual review of plant biology.

[103]  R. Whistler,et al.  Structure of chia seed polysaccharide exudate , 1994 .