The role of three-body interactions on the equilibrium and non-equilibrium properties of fluids from molecular simulation

The aim of this work is to use molecular simulation to investigate the role of three-body interatomic potentials in noble gas systems for two distinct phenomena: phase equilibria and shear flow. In particular we studied the vapour-liquid coexisting phase for pure systems (argon, krypton and x enon) and for an argon-krypton mixture, utilizing the technique called Monte Carlo Gibbs ensemble. We also studied the dependence of the shear viscosity, pressure and energy with the strain rate in planar Couette flow, using a non-equilibrium molecular simulation (NEMD) technique. The results we present in this work demonstrate that three-body interactions play an important role in the overall interatomic interactions of noble gases. This is demonstrated by the good agreement between our simulation results and the experimental data for both equilibrium and non-equilibrium systems. The good results for vapour-liquid coexisting phases encourage performing further computer simulations with realistic potentials. This may improve the prediction of quantities like critical temperature and density, in particular of substances for which these properties are difficult to obtain from experiment. We have demonstrated that use of accurate two- and three-body potentials for shearing liquid argon and xenon displays significant departure from the expected strain rate dependencies of the pressure, energy and shear viscosity. For the first time, the pressure is convincingly observed to vary linearly with an apparent analytic g&2 dependence, in contrast to the predicted g&3/ 2 dependence of mode -coupling theory. Our best extrapolation of the zero -shear viscosity for argon gives excellent agreement (within 1%) with the known experimental data. To the best of our knowledge, this the first time that such accuracy has been achieved with NEMD simulations. This encourages performing simulations with accurate potentials for transport properties.

[1]  A. Panagiotopoulos,et al.  Finite-size effects and approach to criticality in Gibbs ensemble simulations , 1993 .

[2]  R. A. Aziz,et al.  Two- and three-body forces in the interaction of He atoms with Xe overlayers adsorbed on (0001) graphite , 1989 .

[3]  R. Sadus,et al.  Molecular simulation of intermolecular attraction and repulsion in coexisting liquid and vapour phases , 1997 .

[4]  M. Jorge,et al.  Molecular simulation of phase coexistence in adsorption in porous solids , 2002 .

[5]  J. Schouten,et al.  Vapour-liquid and gas-gas equilibria in simple systems , 1980 .

[6]  C. Hoheisel,et al.  Theoretical Treatment of Liquids and Liquid Mixtures , 1993 .

[7]  H. Hanley,et al.  Equilibrium and non-equilibrium radial distribution functions in mixtures , 1980 .

[8]  Evans,et al.  Pressure tensor for inhomogeneous fluids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Richard J. Sadus,et al.  A link between the two-body and three-body interaction energies of fluids from molecular simulation , 2000 .

[10]  R. Sadus The effect of three-body interactions on the liquid–liquid phase coexistence of binary fluid mixtures , 1998 .

[11]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .

[12]  B. D. Todd APPLICATION OF TRANSIENT-TIME CORRELATION FUNCTIONS TO NONEQUILIBRIUM MOLECULAR-DYNAMICS SIMULATIONS OF ELONGATIONAL FLOW , 1997 .

[13]  Chemical Accuracy Obtained in an Ab Initio Molecular Dynamics Simulation of a Fluid by Inclusion of a Three-Body Potential , 1998 .

[14]  R. Sadus,et al.  Three-body interactions and the phase equilibria of mixtures , 2001 .

[15]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[16]  B. D. Todd,et al.  Analytic dependence of the pressure and energy of an atomic fluid under shear. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S. Sandler EQUATIONS OF STATE FOR PHASE EQUILIBRIUM COMPUTATIONS , 1994 .

[18]  J. A. Barker,et al.  Interatomic potentials for krypton and xenon , 1974 .

[19]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[20]  J. A. Barker,et al.  Three-Body Interactions in Liquid and Solid Helium , 1971 .

[21]  F. W. Sears,et al.  Thermodynamics, kinetic theory, and statistical thermodynamics , 1975 .

[22]  B. Guillot,et al.  Triplet dipoles in the absorption spectra of dense rare gas mixtures. I. Short range interactions , 1989 .

[23]  Ryckaert,et al.  Shear-rate dependence of the viscosity of simple fluids by nonequilibrium molecular dynamics. , 1988, Physical review letters.

[24]  I. Nezbeda,et al.  Parallelized sampling of the Gibbs ensemble , 2000 .

[25]  Molecular dynamics implementation of the Gibbs ensemble calculation , 1994 .

[26]  J. R. Dorfman,et al.  Velocity-Correlation Functions in Two and Three Dimensions: Low Density , 1972 .

[27]  R. Sadus Molecular simulation of the vapour-liquid equilibria of pure fluids and binary mixtures containing dipolar components: the effect of Keesom interactions , 1996 .

[28]  K. Yoshino,et al.  Absorption Spectrum of the Argon Molecule in the Vacuum‐uv Region , 1970 .

[29]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[30]  The Liquid State: Applications of Molecular Simulations , 1998 .

[31]  Q. Yan,et al.  Simulation of Phase Equilibria for Lattice Polymers , 1996 .

[32]  E R Dobbs,et al.  Theory and properties of solid argon , 1957 .

[33]  Jonathan Robert Dorfman,et al.  Velocity Correlation Functions in Two and Three Dimensions , 1970 .

[34]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[35]  P. Cummings,et al.  Shear viscosity of model mixtures by nonequilibrium molecular dynamics. I. Argon–krypton mixtures , 1993 .

[36]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[37]  E. A. Mason,et al.  Nonadditivity of Intermolecular Forces: Effects on the Third Virial Coefficient , 1966 .

[38]  R. A. Aziz,et al.  The argon and krypton interatomic potentials revisited , 1986 .

[39]  Evans,et al.  Conditions for the existence of a reentrant solid phase in a sheared atomic fluid. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  V. Vacek,et al.  DIRECT EVALUATION OF VAPOUR-LIQUID EQUILIBRIA OF MIXTURES BY MOLECULAR DYNAMICS USING GIBBS-DUHEM INTEGRATION , 1996 .

[41]  Jeffrey J. Potoff,et al.  Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture , 1998 .

[42]  D. Kofke Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line , 1993 .

[43]  Denis J. Evans,et al.  Equilibrium time correlation functions under gaussian isothermal dynamics , 1984 .

[44]  R. T. W. HALL Vapour–Liquid Equilibria , 1950, Nature.

[45]  Evans,et al.  Shear thickening and turbulence in simple fluids. , 1986, Physical review letters.

[46]  B. D. Todd,et al.  Energy and pressure of shearing fluids at different state points. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  V. Vacek,et al.  Direct Evaluation of Vapour-Liquid Equilibria by Molecular Dynamics using Gibbs-Duhem Integration , 1996 .

[48]  Wilding Critical-point and coexistence-curve properties of the Lennard-Jones fluid: A finite-size scaling study. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  Eduard Hála,et al.  Vapor-liquid equilibrium data bibliography , 1973 .

[50]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[51]  I. Zucker,et al.  Higher order multipole three-body van der Waals interactions and stability of rare gas solids , 1971 .

[52]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of three-body nonadditivity in Ar trimer , 1997 .

[53]  Peter T. Cummings,et al.  Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation , 1997 .

[54]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[55]  Denis J. Evans,et al.  Strain rate dependent properties of a simple fluid , 1998 .

[56]  B. Guillot Triplet dipoles in the absorption spectra of dense rare gas fluids. II. Long range interactions , 1989 .

[57]  Aziz,et al.  Ab initio calculations for helium: A standard for transport property measurements. , 1995, Physical review letters.

[58]  William G. Hoover,et al.  Dense-fluid shear viscosity via nonequilibrium molecular dynamics , 1975 .

[59]  Gary P. Morriss,et al.  Computer simulation study of the comparative rheology of branched and linear alkanes , 1992 .

[60]  W. Hoover,et al.  Argon Shear Viscosity via a Lennard-Jones Potential with Equilibrium and Nonequilibrium Molecular Dynamics , 1973 .

[61]  An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow , 1996 .

[62]  J. Barker,et al.  Atomic interactions in argon , 1968 .

[63]  N. Quirke,et al.  Molecular Modelling and Simulation: Tools for the Modern Era , 2001 .

[64]  Ulrich K. Deiters,et al.  Fast Coding of the Minimum Image Convention , 1998 .

[65]  Richard J. Sadus,et al.  Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials , 1999 .

[66]  Gary P. Morriss,et al.  Nonlinear-response theory for steady planar Couette flow , 1984 .

[67]  P. Cummings,et al.  Effect of three‐body forces on the shear viscosity of liquid argon , 1994 .

[68]  B. D. Todd,et al.  A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow , 1999 .

[69]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[70]  E. Lomba,et al.  INFLUENCE OF THREE-BODY FORCES ON THE GAS-LIQUID COEXISTENCE OF SIMPLE FLUIDS : THE PHASE EQUILIBRIUM OF ARGON , 1997 .

[71]  Willis J. Alberda In this number , 1995 .

[72]  K. Szalewicz,et al.  THREE-BODY CONTRIBUTION TO BINDING ENERGY OF SOLID ARGON AND ANALYSIS OF CRYSTAL STRUCTURE , 1997 .

[73]  R. Sadus Effect of Three-Body Interactions between Dissimilar Molecules on the Phase Behavior of Binary Mixtures: The Transition from Vapor-Liquid Equilibria to Type III Behavior † , 1998 .

[74]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[75]  A. Panagiotopoulos MOLECULAR SIMULATION OF PHASE EQUILIBRIA , 1994 .

[76]  J. A. Barker,et al.  Liquid argon: Monte carlo and molecular dynamics calculations , 1971 .

[77]  M. Szczęśniak,et al.  Calculations of nonadditive effects by means of supermolecular Mo/ller–Plesset perturbation theory approach: Ar3 and Ar4 , 1990 .

[78]  H. Hanley,et al.  Non-newtonian molecular dynamics and thermophysical properties , 1990 .

[79]  D. Frenkel,et al.  UvA-DARE ( Digital Academic Repository ) Calculation of the chemical potential in the Gibbs ensemble , 2006 .

[80]  Luc T. Wille,et al.  Parallel molecular dynamics simulations for short-ranged many-body potentials☆ , 2000 .

[81]  M. Szczęśniak,et al.  Ab initio calculations of nonadditive effects , 1992 .

[82]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[83]  Richard J. Sadus,et al.  The strain rate dependence of shear viscosity, pressure and energy from two-body and three-body interactions , 2001 .

[84]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[85]  N. Kestner,et al.  I. Studies of Cavities Containing One and Two Electrons in Metal-Ammonia Solutions. II. Accurate 'Effective' Intermolecular Pair Potentials in Gaseous Argon. , 1968 .

[86]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[87]  I. R. Mcdonald,et al.  On the calculation by molecular dynamics of the shear viscosity of a simple fluid , 1973 .

[88]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[89]  Martin A. Van Der Hoef Paul A. Madd Novel simulation model for many-body multipole dispersion interactions , 1998 .

[90]  W. Bade Drude‐Model Calculation of Dispersion Forces. III. The Fourth‐Order Contribution , 1958 .

[91]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[92]  Athanassios Z. Panagiotopoulos,et al.  Monte Carlo methods for phase equilibria of fluids , 2000 .

[93]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[94]  B. D. Todd,et al.  On the relationship between two-body and three-body interactions from nonequilibrium molecular dynamics simulation , 2001 .

[95]  G. Ciccotti,et al.  Direct Computation of Dynamical Response by Molecular Dynamics: The Mobility of a Charged Lennard-Jones Particle , 1975 .

[96]  D. Evans Rheological properties of simple fluids by computer simulation , 1981 .

[97]  R. J. Bell Multipolar expansion for the non-additive third-order interaction energy of three atoms , 1970 .

[98]  Brad Lee Holian,et al.  Comment on ‘‘Constant pressure molecular dynamics algorithms’’ [J. Chem. Phys. 101, 4177 (1994)] , 1996 .

[99]  Y. Miyano An effective triplet potential for argon , 1994 .

[100]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[101]  J. A. Barker,et al.  Dipole Oscillator Strengths and Related Quantities for Inert Gases , 1975 .

[102]  David A. Kofke,et al.  Gibbs-Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation , 1993 .

[103]  William G. Hoover,et al.  Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics , 1980 .

[104]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[105]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[106]  G. Ciccotti,et al.  “Thought-experiments” by molecular dynamics , 1979 .

[107]  G. Morriss,et al.  On the number dependence of viscosity in three dimensional fluids , 1989 .

[108]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[109]  P. Cummings,et al.  On the Molecular Dynamics Algorithm for Gibbs Ensemble Simulation , 1996 .

[110]  A. Panagiotopoulos,et al.  Phase Equilibria of Lattice Polymers from Histogram Reweighting Monte Carlo Simulations , 1997, cond-mat/9708095.

[111]  Alfredo Pasquarello,et al.  First-principles Molecular Dynamics , 1993 .

[112]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[113]  Giovanni Ciccotti,et al.  Stationary nonequilibrium states by molecular dynamics. II. Newton's law , 1984 .

[114]  K. Leonhard,et al.  Monte Carlo simulations of neon and argon using ab initio potentials , 2000 .

[115]  Berend Smit,et al.  Simulating the critical behaviour of complex fluids , 1993, Nature.

[116]  M. Cates OBSERVATION, PREDICTION AND SIMULATION OF PHASE TRANSITIONS IN COMPLEX FLUIDS , 1995 .

[117]  G. Ciccotti,et al.  Transport properties of molten alkali halides , 1976 .

[118]  B. D. Todd,et al.  Comparison of planar shear flow and planar elongational flow for systems of small molecules , 2000 .

[119]  James D. Gunton,et al.  Theory of Nonlinear Transport Processes: Nonlinear Shear Viscosity and Normal Stress Effects , 1973 .

[120]  Jeffrey J. Potoff,et al.  Molecular simulation of phase equilibria for mixtures of polar and non-polar components , 1999 .

[121]  P. Madden,et al.  Three-body dispersion contributions to the thermodynamic properties and effective pair interactions in liquid argon , 1999 .