Bayesian compressive sensing for ultrawideband inverse scattering in random media

We develop an ultrawideband (UWB) inverse scattering technique for reconstructing continuous random media based on Bayesian compressive sensing. In addition to providing maximum a posteriori estimates of the unknown weights, Bayesian inversion provides estimate of the confidence level of the solution, as well as a systematic approach for optimizing subsequent measurement(s) to maximize information gain. We impose sparsity priors directly on spatial harmonics to exploit the spatial correlation exhibited by continuous media, and solve for their posterior probability density functions efficiently using a fast relevance vector machine. We linearize the problem using the first-order Born approximation which enables us to combine, in a single inversion, measurements from multiple transmitters and ultrawideband frequencies. We extend the method to high-contrast media using the distorted-Born iterative method. We apply time-reversal strategies to adaptively focus the inversion effort onto subdomains of interest, and hence reduce the overall inversion cost. The proposed techniques are illustrated in a number of canonical scenarios including crosshole and borehole sensing.

[1]  Yasamin Mostofi,et al.  An Integrated Framework for Obstacle Mapping With See-Through Capabilities Using Laser and Wireless Channel Measurements , 2014, IEEE Sensors Journal.

[2]  J. Idier Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[3]  Barry D. Van Veen,et al.  Estimating the Breast Surface Using UWB Microwave Monostatic Backscatter Measurements , 2008, IEEE Transactions on Biomedical Engineering.

[4]  Guo-Sheng Liu,et al.  Analysis of Directional Logging Tools in Anisotropic and Multieccentric Cylindrically-Layered Earth Formations , 2012, IEEE Transactions on Antennas and Propagation.

[5]  P. Chaumet,et al.  Electromagnetic wave imaging of targets buried in a cluttered medium using a hybrid inversion-DORT method , 2012 .

[6]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[7]  Mathias Fink Time-reversal mirrors , 1993 .

[8]  Paolo Rocca,et al.  A Bayesian-Compressive-Sampling-Based Inversion for Imaging Sparse Scatterers , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[10]  Yasamin Mostofi,et al.  Cooperative Wireless-Based Obstacle/Object Mapping and See-Through Capabilities in Robotic Networks , 2013, IEEE Transactions on Mobile Computing.

[11]  Fernando L. Teixeira,et al.  Imaging and tracking of targets in clutter using differential time-reversal , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[12]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[13]  Barry D. Van Veen,et al.  Breast Tumor Characterization Based on Ultrawideband Microwave Backscatter , 2008, IEEE Transactions on Biomedical Engineering.

[14]  A. Abubakar,et al.  Microwave Biomedical Data Inversion Using the Finite-Difference Contrast Source Inversion Method , 2009, IEEE Transactions on Antennas and Propagation.

[15]  J. C. Lemm Bayesian field theory , 2003 .

[16]  E. A. Marengo Subspace and Bayesian Compressive Sensing Methods in Imaging , 2007 .

[17]  Dominique Lesselier,et al.  Foreword to the special section on electromagnetic and ultrasonic nondestructive evaluation , 2002 .

[18]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[19]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[20]  A. Massa,et al.  Microwave Imaging Within the First-Order Born Approximation by Means of the Contrast-Field Bayesian Compressive Sensing , 2012, IEEE Transactions on Antennas and Propagation.

[21]  Magda El-Shenawee,et al.  Review of Electromagnetic Techniques for Breast Cancer Detection , 2011, IEEE Reviews in Biomedical Engineering.

[22]  Brian R. Spies,et al.  Three-Dimensional Electromagnetics , 1999 .

[23]  H. Lev-Ari,et al.  Compressive Sensing for Inverse Scattering , 2008 .

[24]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[25]  Edward J. Baranoski,et al.  Through wall imaging: Historical perspective and future directions , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  Toshiyuki Takagi Electromagnetic Nondestructive Evaluation , 1997 .

[27]  Monte Carlo Integration Markov Chain Monte Carlo and Gibbs Sampling , 2002 .

[28]  Aria Abubakar,et al.  Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion , 2010 .

[29]  Weng Cho Chew,et al.  An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..

[30]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[31]  Jacques R. Ernst,et al.  A New Vector Waveform Inversion Algorithm for Simultaneous Updating of Conductivity and Permittivity Parameters From Combination Crosshole/Borehole-to-Surface GPR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  David B. Dunson,et al.  Multi-Task Compressive Sensing , 2007 .

[33]  Takashi Takenaka,et al.  Conjugate gradient method applied to inverse scattering problem , 1995 .

[34]  Anthony J. Devaney,et al.  Inverse scattering in inhomogeneous background media , 2003 .

[35]  Eric L. Miller,et al.  Statistical method to detect subsurface objects using array ground-penetrating radar data , 2002, IEEE Trans. Geosci. Remote. Sens..

[36]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[37]  P. Gerstoft,et al.  Ocean acoustic inversion with estimation of a posteriori probability distributions , 1998 .

[38]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[39]  T. G. Leeuwen,et al.  The Twente Photoacoustic Mammoscope: Towards clinical trials in Emerging Technologies in Breast Imaging and Mammography , 2008 .

[40]  Y. Mostofi,et al.  Cooperative Robotic Structure Mapping Using Wireless Measurements—A Comparison of Random and Coordinated Sampling Patterns , 2013, IEEE Sensors Journal.

[41]  Jacques R. Ernst,et al.  Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Marius Birsan A Bayesian approach to electromagnetic sounding in a marine environment , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  Fernando L. Teixeira,et al.  Experimental Demonstration of Statistical Stability in Ultrawideband Time-Reversal Imaging , 2014, IEEE Geoscience and Remote Sensing Letters.

[44]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[45]  Fernando L. Teixeira,et al.  Statistical Stability of Ultrawideband Time-Reversal Imaging in Random Media , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[46]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[47]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[48]  Fernando L. Teixeira,et al.  Cylindrical FDTD Analysis of LWD Tools Through Anisotropic Dipping-Layered Earth Media , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[49]  L. Carin,et al.  Electromagnetic Time-Reversal Source Localization in Changing Media: Experiment and Analysis , 2007, IEEE Transactions on Antennas and Propagation.

[50]  李廉林,et al.  A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics , 2010 .

[51]  Edwin A. Marengo COMPRESSIVE SENSING AND SIGNAL SUBSPACE METHODS FOR INVERSE SCATTERING INCLUDING MULTIPLE SCATTERING , 2007 .

[52]  F.L. Teixeira,et al.  On the Sensitivity of Time-Reversal Imaging Techniques to Model Perturbations , 2008, IEEE Transactions on Antennas and Propagation.

[53]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[54]  Weng Cho Chew,et al.  Nonlinear two-dimensional velocity profile inversion using time domain data , 1992, IEEE Trans. Geosci. Remote. Sens..

[55]  A. Safaai-Jazi,et al.  UWB applications for through-wall detection , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[56]  Richard G. Plumb,et al.  A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  Weng Cho Chew,et al.  Comparison of the born iterative method and tarantola's method for an electromagnetic time‐domain inverse problem , 1991, Int. J. Imaging Syst. Technol..

[58]  Fernando L. Teixeira,et al.  Numerical Mode-Matching Method for Tilted-Coil Antennas in Cylindrically Layered Anisotropic Media With Multiple Horizontal Beds , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Emmanuel Duflos,et al.  Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[60]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[61]  Amir Asif,et al.  Time-Reversal Ground-Penetrating Radar: Range Estimation With Cramér–Rao Lower Bounds , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Weng Cho Chew,et al.  Time-domain inverse scattering using the local shape function (LSF) method , 1993 .

[63]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .