Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells

Abstract We report the flexible transparent Cu nanowire mesh electrode fabricated by simple transfer printing from flexible PDMS stamp as a potential replacement for the conventional ITO electrode in organic solar cell applications. Fabricated Cu mesh electrode shows a greater flexibility than conventional ITO electrode deposited on plastic substrates, and exhibits high optical transmittance and electrical conductance. It can be bent to 3 mm radius of curvature with no degradation of the conductance. Large area nanoscale metal electrodes on flexible substrates are demonstrated using a roll-to-roll process. The organic solar cell made with the transparent Cu electrode performs as good as the one with ITO electrode, which indicates that such electrode has the potential to replace conventional ITO electrode for low-cost, large-area flexible organic solar cell applications.

[1]  Hui Joon Park,et al.  A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll‐to‐Roll Process without Sacrificing High Device Performances , 2010, Advanced materials.

[2]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[3]  Frederik C. Krebs,et al.  Large area plastic solar cell modules , 2007 .

[4]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[5]  Zakya H. Kafafi,et al.  Flexible organic photovoltaics using conducting polymer electrodes , 2005 .

[6]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[7]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[8]  Reuben T. Collins,et al.  Ultrasonic spray deposition for production of organic solar cells , 2009 .

[9]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[10]  D. V. Krevelen Properties of Polymers , 1990 .

[11]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[12]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[13]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[14]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[15]  L. Jay Guo,et al.  Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light‐Emitting Diodes , 2007 .

[16]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[17]  Jan Genoe,et al.  Polymer based organic solar cells using ink-jet printed active layers , 2008 .

[18]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[19]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[20]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[21]  Frederik C. Krebs,et al.  Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate , 2004 .

[22]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[23]  S. Ravi P. Silva,et al.  Interpenetrating multiwall carbon nanotube electrodes for organic solar cells , 2006 .

[24]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[25]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[26]  B. Kippelen Organic Photovoltaics , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[27]  L. Guo,et al.  Room‐Temperature, Low‐Pressure Nanoimprinting Based on Cationic Photopolymerization of Novel Epoxysilicone Monomers , 2005, Advanced materials.

[28]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[29]  Roar R. Søndergaard,et al.  Advanced materials and processes for polymer solar cell devices , 2010 .

[30]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[31]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[32]  L. Jay Guo,et al.  Metal transfer assisted nanolithography on rigid and flexible substrates , 2008 .

[33]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[34]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[35]  Niyazi Serdar Sariciftci,et al.  Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications , 2005, Proceedings of the IEEE.

[36]  Carlos Pina-Hernandez,et al.  High‐Throughput and Etch‐Selective Nanoimprinting and Stamping Based on Fast‐ Thermal‐Curing Poly(dimethylsiloxane)s , 2007 .

[37]  Vivek Subramanian,et al.  Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing , 2009 .

[38]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .