A new mechanism to maintain diversity in multi-objective metaheuristics

In this article, a new mechanism to spread the solutions generated by a multi-objective evolutionary algorithm is proposed. This approach is based on the use of stripes that are applied in objective function space and is independent of the search engine adopted. Additionally, it overcomes some of the drawbacks of other previous proposals such as the ϵ-dominance method. In order to validate the proposed approach, it is coupled to a multi-objective particle swarm optimizer and its performance is assessed with respect to that of state-of-the-art algorithms, using standard test problems and performance measures taken from the specialized literature. The results indicate that the proposed approach is a viable diversity maintenance mechanism that can be incorporated to any multi-objective metaheuristic used for multi-objective optimization.

[1]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[2]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[3]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[4]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[5]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[6]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[7]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[8]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[9]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[12]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[13]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[14]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[15]  Xiaodong Li,et al.  On performance metrics and particle swarm methods for dynamic multiobjective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[17]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[18]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[19]  Arthur Tay,et al.  A cooperative coevolutionary algorithm for multiobjective particle swarm optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[22]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[23]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[24]  Junjie Yang,et al.  A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO) , 2009, Comput. Math. Appl..

[25]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[26]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[27]  J. Renaud,et al.  Enhanced multiobjective particle swarm optimization in combination with adaptive weighted gradient-based searching , 2008 .

[28]  Carlos A. Coello Coello,et al.  Asymptotic convergence of metaheuristics for multiobjective optimization problems , 2006, Soft Comput..

[29]  J. Teich,et al.  The role of /spl epsi/-dominance in multi objective particle swarm optimization methods , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[30]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[31]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[32]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[33]  Carlos A. Coello Coello,et al.  Pareto-adaptive -dominance , 2007, Evolutionary Computation.