A new method for establishing conservativity of classical systems over their intuitionistic version

We use a syntactical notion of Kripke models to obtain interpretations of subsystems of arithmetic in their intuitionistic counterparts. This yields, in particular, a new proof of Buss' result that the Skolem functions of Bounded Arithmetic are polynomial time computable.

[1]  Stephen A. Cook,et al.  Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.

[2]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[3]  Jeremy Avigad,et al.  Interpreting classical theories in constructive ones , 2000, Journal of Symbolic Logic.

[4]  A. Troelstra Constructivism in mathematics , 1988 .

[5]  S. Buss On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results , 1990 .

[6]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[7]  G. Takeuti Proof Theory , 1975 .

[8]  W. Pohlers,et al.  A short course in ordinal analysis , 1993 .

[9]  Jan Johannsen Schwache Fragmente der Arithmetik und Schwellwertschaltkreise beschränkter Tiefe , 1996 .

[10]  J. Heijenoort From Frege To Gödel , 1967 .

[11]  W. Buchholz Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .

[12]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[13]  C. Parsons On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .

[14]  S. S. Wainer,et al.  Basic proof theory , 1993 .

[15]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.

[16]  Ulrich Kohlenbach,et al.  Effective bounds from ineffective proofs in analysis: An application of functional interpretation and majorization , 1992, Journal of Symbolic Logic.

[17]  Wolfgang Burr,et al.  Fragments of Heyting arithmetic , 2000, Journal of Symbolic Logic.

[18]  F. Ramsey The foundations of mathematics , 1932 .

[19]  Anne Sjerp Troelstra,et al.  Note on the fan theorem , 1974, Journal of Symbolic Logic.