Hybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\

Large-scale unconditional and conditional vertex $$p$$p-centre problems are solved using two meta-heuristics. One is based on a three-stage approach whereas the other relies on a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search, exact method, and aggregation techniques. The methods are assessed on the TSP dataset which consist of up to 71,009 demand points with $$p$$p varying from 5 to 100. To the best of our knowledge, these are the largest instances solved for unconditional and conditional vertex $$p$$p-centre problems. The two proposed meta-heuristics yield competitive results for both classes of problems.

[1]  Ali Kaveh,et al.  Solving the conditional and unconditional p-center problem with modified harmony search: A real case study , 2011 .

[2]  Edward Minieka,et al.  Conditional centers and medians of a graph , 1980, Networks.

[3]  Reuven Chen,et al.  Conditional Minisum and Minimax Location-Allocation Problems in Euclidean Space , 1988, Transp. Sci..

[4]  Nenad Mladenović,et al.  A Variable Neighbourhood Algorithm for Solving the Continuous Location-Allocation Problem , 1995 .

[5]  Timothy J. Lowe,et al.  Location on Networks: A Survey. Part I: The p-Center and p-Median Problems , 1983 .

[6]  Jörg Sander,et al.  Mining statistically sound co-location patterns at multiple distances , 2014, SSDBM '14.

[7]  Saïd Salhi,et al.  Enhancements to Two Exact Algorithms for Solving the Vertex P-Center Problem , 2005, J. Math. Model. Algorithms.

[8]  Siyuan Liu,et al.  Towards mobility-based clustering , 2010, KDD.

[9]  Jack J. Dongarra,et al.  Performance of various computers using standard linear equations software in a FORTRAN environment , 1988, CARN.

[10]  Jafar Rezaei,et al.  Solving the constrained p-center problem using heuristic algorithms , 2011, Appl. Soft Comput..

[11]  Pierre Hansen,et al.  Solving large p-median clustering problems by primal–dual variable neighborhood search , 2009, Data Mining and Knowledge Discovery.

[12]  R. L. Francis,et al.  Demand point aggregation analysis for a class of constrained location models: a penalty function approach , 2004 .

[13]  Dusan Ramljak,et al.  Bee colony optimization for the p-center problem , 2011, Comput. Oper. Res..

[14]  Chandra Ade Irawan,et al.  Solving large $$p$$p-median problems by a multistage hybrid approach using demand points aggregation and variable neighbourhood search , 2015, J. Glob. Optim..

[15]  F. Plastria Network and discrete location models, algorithms and applications , 1996 .

[16]  Zvi Drezner,et al.  On the conditional p-median problem , 1995, Comput. Oper. Res..

[17]  E. Hillsman,et al.  Errors in measuring distances from populations to service centers , 1978 .

[18]  Arie Tamir,et al.  A p-center grid-positioning aggregation procedure , 1999, Comput. Oper. Res..

[19]  Igor Vasil'ev,et al.  An aggregation heuristic for large scale p-median problem , 2012, Comput. Oper. Res..

[20]  David Simchi-Levi,et al.  Technical Note - Conditional Location Problems on Networks , 1990, Transp. Sci..

[21]  Hatice Calik,et al.  Double bound method for solving the p-center location problem , 2013, Comput. Oper. Res..

[22]  Pierre Hansen,et al.  Solving the p‐Center problem with Tabu Search and Variable Neighborhood Search , 2000, Networks.

[23]  Doron Chen,et al.  A relaxation-based algorithm for solving the conditional p-center problem , 2010, Oper. Res. Lett..

[24]  Said Salhi,et al.  A multi-level composite heuristic for the multi-depot vehicle fleet mix problem , 1997 .

[25]  Saïd Salhi,et al.  Integrating heuristic information into exact methods: The case of the vertex p-centre problem , 2010, J. Oper. Res. Soc..

[26]  Timothy J. Lowe,et al.  Duality and Distance Constraints for the Nonlinear p-Center Problem and Covering Problem on a Tree Network , 1982, Oper. Res..

[27]  A. Tamir,et al.  Aggregation Decomposition and Aggregation Guidelines for a Class of Minimax and Covering Location Models , 2004 .

[28]  Valery G. Romanovski,et al.  The Center Problem , 2009 .

[29]  Said Salhi,et al.  Constructive heuristics for the uncapacitated continuous location-allocation problem , 2001, J. Oper. Res. Soc..

[30]  Timothy J. Lowe,et al.  Error-bound driven demand point aggregation for the rectilinear distance p-center model , 1996 .

[31]  Avijit Ghosh,et al.  Spatial analysis and location-allocation models , 1987 .

[32]  A. Colorni,et al.  Dominant, an algorithm for the p-center problem , 2003, Eur. J. Oper. Res..

[33]  J. Current,et al.  Elimination of Source A and B Errors in p‐Median Location Problems , 2010 .

[34]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[35]  Chung-Cheng Lu,et al.  Robust vertex p-center model for locating urgent relief distribution centers , 2013, Comput. Oper. Res..

[36]  Dong X. Shaw A unified limited column generation approach for facility location problems ontrees , 1999, Ann. Oper. Res..

[37]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[38]  T. C. Edwin Cheng,et al.  An improved algorithm for the p-center problem on interval graphs with unit lengths , 2007, Comput. Oper. Res..

[39]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[40]  Chandra Ade Irawan,et al.  An adaptive multiphase approach for large unconditional and conditional p-median problems , 2014, Eur. J. Oper. Res..

[41]  Christian S. Jensen,et al.  Integrating non-spatial preferences into spatial location queries , 2014, SSDBM '14.

[42]  S. Ibrahim,et al.  Comparing Alternative Methods of Measuring Geographic Access to Health Services: An Assessment of People’s Access to Specialist Hospital in Kebbi State , 2013 .

[43]  R. L. Francis,et al.  State of the Art-Location on Networks: A Survey. Part II: Exploiting Tree Network Structure , 1983 .

[44]  Zvi Drezner,et al.  A new formulation for the conditional p-median and p-center problems , 2008, Oper. Res. Lett..

[45]  Pierre Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[46]  Zvi Drezner Conditional p-Center Problems , 1989, Transp. Sci..

[47]  Timothy J. Lowe,et al.  Aggregation error for location models: survey and analysis , 2009, Ann. Oper. Res..

[48]  B. Bozkaya,et al.  A spanning tree approach to the absolute p-center problem , 1998 .

[49]  Doron Chen,et al.  New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems , 2009, Comput. Oper. Res..

[50]  Martine Labbé,et al.  A New Formulation and Resolution Method for the p-Center Problem , 2004, INFORMS J. Comput..

[51]  Chung-Cheng Lu,et al.  Robust weighted vertex p-center model considering uncertain data: An application to emergency management , 2013, Eur. J. Oper. Res..

[52]  John Fortney,et al.  Comparing Alternative Methods of Measuring Geographic Access to Health Services , 2000, Health Services and Outcomes Research Methodology.

[53]  M. Jeger,et al.  Algorithms for finding P-centers on a weighted tree (for relatively small P) , 1985, Networks.

[54]  Zvi Drezner,et al.  The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .

[55]  E. Minieka The m-Center Problem , 1970 .