Feasibility Analysis of Eye Typing with a Standard Webcam

With the development of assistive technology, eye typing has become an alternative form of text entry for physically challenged people with severe motor disabilities. However, additional eye-tracking devices need to be used to track eye movements which is inconvenient in some cases. In this paper, we propose an appearance-based method to estimate the person’s gaze point using a webcam, and also investigate some practical issues of the method. The experimental results demonstrate the feasibility of eye typing using the proposed method.

[1]  I. Scott MacKenzie,et al.  Eye typing using word and letter prediction and a fixation algorithm , 2008, ETRA.

[2]  Per Ola Kristensson,et al.  The potential of dwell-free eye-typing for fast assistive gaze communication , 2012, ETRA.

[3]  Takahiro Okabe,et al.  Adaptive Linear Regression for Appearance-Based Gaze Estimation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Maria da Graça Campos Pimentel,et al.  Filteryedping: Design Challenges and User Performance of Dwell-Free Eye Typing , 2015, TACC.

[5]  Rafael Cabeza,et al.  Gaze Tracking System Model Based on Physical Parameters , 2007, Int. J. Pattern Recognit. Artif. Intell..

[6]  Maria da Graça Campos Pimentel,et al.  Filteryedping: A Dwell-Free Eye Typing Technique , 2015, CHI Extended Abstracts.

[7]  Takahiro Okabe,et al.  Inferring human gaze from appearance via adaptive linear regression , 2011, 2011 International Conference on Computer Vision.

[8]  Nikos Fakotakis,et al.  Precise localization of eye centers in low resolution color images , 2015, Image Vis. Comput..

[9]  Zhi-Hua Zhou,et al.  Projection functions for eye detection , 2004, Pattern Recognit..

[10]  Sung-Jea Ko,et al.  A novel iris center localization based on circle fitting using radially sampled features , 2015, 2015 International Symposium on Consumer Electronics (ISCE).

[11]  Juan J. Cerrolaza,et al.  Taxonomic study of polynomial regressions applied to the calibration of video-oculographic systems , 2008, ETRA.

[12]  Qiang Ji,et al.  Automatic Eye Detection and Its Validation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[13]  Anke Huckauf,et al.  Alternatives to single character entry and dwell time selection on eye typing , 2010, ETRA.

[14]  Pong C. Yuen,et al.  Multi-cues eye detection on gray intensity image , 2001, Pattern Recognit..

[15]  David J. Ward,et al.  Artificial intelligence: Fast hands-free writing by gaze direction , 2002, Nature.

[16]  Chonho Lee,et al.  GazeTry: Swipe Text Typing Using Gaze , 2015, OZCHI.

[17]  Zhiwei Zhu,et al.  Robust real-time eye detection and tracking under variable lighting conditions and various face orientations , 2005, Comput. Vis. Image Underst..

[18]  Sayan Sarcar,et al.  EyeK: an efficient dwell-free eye gaze-based text entry system , 2013, APCHI.

[19]  Dan Witzner Hansen,et al.  Eye tracking in the wild , 2005, Comput. Vis. Image Underst..

[20]  Narendra Ahuja,et al.  Appearance-based eye gaze estimation , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[21]  Jian-Gang Wang,et al.  Estimating the eye gaze from one eye , 2005, Comput. Vis. Image Underst..

[22]  Qiang Ji,et al.  In the Eye of the Beholder: A Survey of Models for Eyes and Gaze , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Bu-Sung Lee,et al.  Robust Eye-Based Dwell-Free Typing , 2016, Int. J. Hum. Comput. Interact..

[24]  Kentaro Kotani,et al.  Design of Eye-Typing Interface Using Saccadic Latency of Eye Movement , 2010, Int. J. Hum. Comput. Interact..

[25]  Mads Nielsen,et al.  Eye typing using Markov and active appearance models , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[26]  Qiang Ji,et al.  Probabilistic gaze estimation without active personal calibration , 2011, CVPR 2011.

[27]  Kari-Jouko Räihä,et al.  An exploratory study of eye typing fundamentals: dwell time, text entry rate, errors, and workload , 2012, CHI.

[28]  Theo Gevers,et al.  Accurate Eye Center Location through Invariant Isocentric Patterns , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Rafael Cabeza,et al.  Evaluation of pupil center-eye corner vector for gaze estimation using a web cam , 2012, ETRA '12.

[30]  Mario Fritz,et al.  Appearance-based gaze estimation in the wild , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Päivi Majaranta,et al.  Gaze Interaction and Applications of Eye Tracking - Advances in Assistive Technologies , 2011 .

[32]  Bu-Sung Lee,et al.  A robust recognition approach in eye-based dwell-free typing , 2015, 2015 IEEE International Conference on Progress in Informatics and Computing (PIC).

[33]  Bibianna Bałaj,et al.  Paivi Majaranta, Hirotaka Aoki, Mick Donegan, Dan Witzner Hansen, John Paulin Hansen, Aulikki Hyrskykari, Kari-Jouko Raiha (red.), Gaze interaction and applications of eye tracking: Advances in assistive technologies, Hershey, PA: IGI Global 2012, ss. 382 (Recenzja) , 2012 .

[34]  Oleg Spakov,et al.  Fast gaze typing with an adjustable dwell time , 2009, CHI.

[35]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.