Global existence of solutions to a weakly coupled critical parabolic system in two-dimensional exterior domains

Abstract This paper is concerned with the existence and non-existence of global-in-time solutions of the initial-boundary value problem of the following weakly coupled parabolic system { ∂ t u ( x , t ) − Δ u ( x , t ) = v ( x , t ) p , ( x , t ) ∈ Ω × ( 0 , ∞ ) , ∂ t v ( x , t ) − Δ v ( x , t ) = u ( x , t ) q , ( x , t ) ∈ Ω × ( 0 , ∞ ) , u ( x , t ) = 0 , v ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × ( 0 , ∞ ) , u ( x , 0 ) = f ( x ) ≥ 0 , v ( x , 0 ) = g ( x ) ≥ 0 , x ∈ Ω , where Ω is an exterior domain in R 2 having a smooth boundary ∂Ω. The given pair ( p , q ) with 0 q ≤ p describes the effect of weakly coupled nonlinearity and ( f , g ) is given initial data. We determine the respective regions for existence and nonexistence of global-in-time solutions to the problem. In the case of whole space R 2 (without boundary condition) Escobedo–Herrero (1991) found the global existence for 2 + p − p q 0 and non-existence for 2 + p − p q ≥ 0 . We emphasize that in the case of exterior domain, the critical case 2 + p − p q = 0 with ( p , q ) ≠ ( 2 , 2 ) belongs to the global existence in the contrast of the case of whole space. This difference comes from the behavior of linear two-dimensional heat semigroup e t Δ Ω in exterior domains.

[1]  M. Ikeda,et al.  Remark on upper bound for lifespan of solutions to semilinear evolution equations in a two-dimensional exterior domain , 2017, Journal of Mathematical Analysis and Applications.

[2]  Kotaro Hisa,et al.  Existence of solutions for a fractional semilinear parabolic equation with singular initial data , 2016, Nonlinear Analysis.

[3]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[4]  Kantaro Hayakawa,et al.  On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations , 1973 .

[5]  Kazuhiro Ishige On the Fujita exponent for a semilinear heat equation with a potential term , 2008 .

[6]  M. Ikeda,et al.  Lifespan of Solutions for a Weakly Coupled System of Semilinear Heat Equations , 2020, Tokyo Journal of Mathematics.

[7]  M. Ikeda,et al.  Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method , 2019, Nonlinear Analysis.

[8]  M. A. Herrero,et al.  A semilinear parabolic system in a bounded domain , 1993 .

[9]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[10]  Qi S. Zhang A general blow-up result on nonlinear boundary-value problems on exterior domains , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  W. Ni,et al.  Global existence, large time behavior and life span of solutions of a semilinear parabolic cauchy problem , 1992 .

[12]  Keng Deng,et al.  The Role of Critical Exponents in Blow-Up Theorems: The Sequel , 2000 .

[13]  Hiroshi Tanaka,et al.  On the growing up problem for semilinear heat equations , 1977 .

[14]  Kazuhiro Ishige,et al.  Supersolutions for a class of nonlinear parabolic systems , 2015, 1510.07838.

[15]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[16]  M. A. Herrero,et al.  A uniqueness result for a semilinear reaction-diffusion system , 1991 .

[17]  Catherine Bandle,et al.  On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains , 1989 .

[18]  Sadao Sugitani,et al.  On nonexistence of global solutions for some nonlinear integral equations , 1975 .

[19]  Kazuhiro Ishige,et al.  Critical Fujita exponents for semilinear heat equations with quadratically decaying potential , 2020 .

[20]  R. Pinsky The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain , 2008, 0805.1313.

[21]  L. Saloff-Coste,et al.  Dirichlet heat kernel in the exterior of a compact set , 2002 .