Dicopper(II) Metallacyclophanes with Electroswitchable Polymethyl-Substituted para-Phenylene Spacers.

Double-stranded anionic dinuclear copper(II) metallacyclic complexes of the paracyclophane type [Cu2L2](4-) have been prepared by the Cu(II)-mediated self-assembly of different para-phenylenebis(oxamato) bridging ligands with either zero-, one-, or four-electron-donating methyl substituents (L=N,N'-para-phenylenebis(oxamate) (ppba; 1), 2-methyl- N,N'-para-phenylenebis(oxamate) (Meppba; 2), and 2,3,5,6-tetramethyl- N,N'-para-phenylenebis(oxamate) (Me4ppba; 3)). These complexes have been isolated as their tetra-n-butylammonium (1 a-3 a), lithium(I) (1 b-3 b), and tetraphenylphosphonium salts (1 c-3 c). The X-ray crystal structures of 1 a and 3 c show a parallel-displaced π-stacked conformation with a smaller deviation from perpendicularity between the two benzene rings and the basal planes of the square planar Cu(II) ions when increasing the number of methyl substituents (average dihedral angles (ϕ) of 58.72(7) and 73.67(5)° for 1 a and 3 c, respectively). Variable-temperature (2.0-300 K) magnetic-susceptibility measurements show an overall increase of the intramolecular antiferromagnetic coupling with the number of methyl substituents onto the para-phenylene spacers (-J=75-95, 100-124, and 128-144 cm(-1) for 1 a-c, 2 a-c, and 3 a-c, respectively; H=-JS1×S2). Cyclic voltammetry (CV) measurements show a reversible one-electron oxidation of the double polymethyl-substituted para-phenylenediamidate bridging skeleton at a relatively low formal potential that decreases with the number of methyl substituents (E1=+0.33, +0.24, and +0.15 V vs. SCE for 1-3, respectively). The monooxidized dicopper(II) π-radical cation species 3' prepared by the chemical oxidation of 3 with bromine exhibits intense metal-to-ligand charge-transfer (MLCT) transitions in the visible and near-IR (λmax=595 and 875 nm, respectively) regions together with a rhombic EPR signal with a seven-line splitting pattern due to hyperfine coupling with the nuclear spin of the two Cu(II) ions. Density functional (DF) calculations for 3' evidence a characteristic iminoquinonoid-type short-long-short alternating sequence of C-N and C-C bonds for both tetramethyl-para-phenylenediamidate bridges and a large amount of spin density of negative sign mainly delocalized along each of the four benzene C atoms directly attached to the amidate N atoms, which is in agreement with a fully delocalized π-stacked monoradical ligand description. Hence, the spins of the two Cu(II) ions (SCu=1/2) that are antiparallel aligned in 3 (OFF state) become parallel in 3' (ON state). Further developments may be then envisaged for this new permethylated dicopper(II) paracyclophane with a redox noninnocent ligand as a prototype for molecular magnetic electroswitch.

[1]  J. Pasán,et al.  Redox switching of the antiferromagnetic coupling in permethylated dicopper(II) paracyclophanes. , 2012, Chemical communications.

[2]  B. le Guennic,et al.  Simultaneous bridge-localized and mixed-valence character in diruthenium radical cations featuring diethynylaromatic bridging ligands. , 2011, Journal of the American Chemical Society.

[3]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[4]  H. Lang,et al.  Influencing the electronic interaction in diferrocenyl-1-phenyl-1H-pyrroles. , 2011, Dalton transactions.

[5]  S. Yokojima,et al.  Photo- and electro-chromic organometallics with dithienylethene (DTE) linker, L2CpM-DTE-MCpL2: dually stimuli-responsive molecular switch. , 2011, Dalton transactions.

[6]  I. Guzei,et al.  Intramolecular π-stacking interactions of bridged bis-p-phenylenediamine radical cations and diradical dications: charge-transfer versus spin-coupling. , 2011, Angewandte Chemie.

[7]  J. Pasán,et al.  Oligo-m-phenyleneoxalamide copper(II) mesocates as electro-switchable ferromagnetic metal-organic wires. , 2010, Chemistry.

[8]  H. O. Stumpf,et al.  Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials , 2010 .

[9]  O. Fabelo,et al.  Topological control of the spin coupling in dinuclear copper(II) complexes with meta - and para -phenylenediamine bridging ligands , 2010 .

[10]  O. Fabelo,et al.  Long-distance magnetic coupling in dinuclear copper(II) complexes with oligo-para-phenylenediamine bridging ligands , 2010 .

[11]  D. O′Hare,et al.  Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. , 2010, Chemical reviews.

[12]  Gaoquan Li,et al.  Solution and solid-state studies of doubly trimethylene-bridged tetraalkyl p-phenylenediamine diradical dication conformations. , 2010, Journal of the American Chemical Society.

[13]  Hyoyoung Lee,et al.  Ferromagnetic nanoscale electron correlation promoted by organic spin-dependent delocalization. , 2009, Journal of the American Chemical Society.

[14]  K. Wieghardt,et al.  Redox-noninnocence of N,N'-bis(6-methyl-2-pyridylmethylene)ethane-1,2-diamine (L): synthesis and characterization of diamagnetic [Ni(II)2(L**)2] and [Zn(II)2(L)Cl4]((L**)2- pi diradical dianion of L). , 2009, Chemical communications.

[15]  J. Pasán,et al.  Redox switch-off of the ferromagnetic coupling in a mixed-spin tricobalt(II) triple mesocate. , 2009, Journal of the American Chemical Society.

[16]  F. Lloret,et al.  Ferromagnetic coupling by spin polarization in a trinuclear copper(II) metallacyclophane with a triangular cage-like structure. , 2009, Inorganic chemistry.

[17]  H. Stueger,et al.  Redox-active organometallics: magnetic and electronic couplings through carbon-silicon hybrid molecular connectors. , 2008, Journal of the American Chemical Society.

[18]  Gaoquan Li,et al.  Alkylated trimethylene-bridged bis(p-phenylenediamines). , 2008, Journal of the American Chemical Society.

[19]  F. Lloret,et al.  Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective. , 2008, Dalton transactions.

[20]  Louise N. Dawe,et al.  Ligand directed self-assembly of polymetallic [n x n] grids: rational routes to large functional molecular subunits? , 2008, Dalton transactions.

[21]  S. Grimme,et al.  Trinuclear copper complexes with triplesalen ligands: geometric and electronic effects on ferromagnetic coupling via the spin-polarization mechanism. , 2007, Chemistry.

[22]  F. Neese,et al.  Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands. , 2007, Dalton transactions.

[23]  Joel S. Miller,et al.  Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2-) and the significantly stronger coupling chloranilate(*3-) radical trianion. , 2007, Journal of the American Chemical Society.

[24]  J. Bonvoisin,et al.  Electronic and magnetic communication in mixed-valent and homovalent ruthenium complexes containing phenylcyanamide type bridging ligands. , 2007, Journal of the American Chemical Society.

[25]  J. Lehn,et al.  Addressing metal centres in supramolecular assemblies. , 2006, Chemical Society reviews.

[26]  S. Alvarez,et al.  About the calculation of exchange coupling constants using density-functional theory: the role of the self-interaction error. , 2005, The Journal of chemical physics.

[27]  C. Philouze,et al.  An unprecedented bridging phenoxyl radical in dicopper(II) complexes: evidence for an s=3/2 spin state. , 2005, Angewandte Chemie.

[28]  M. Ata,et al.  Synthesis and Redox Behavior of Wurster Blue Cyclophanes , 2004 .

[29]  K. Wieghardt,et al.  Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity. , 2004, Dalton transactions.

[30]  C. Sangregorio,et al.  Quinonoid metal complexes: toward molecular switches. , 2004, Accounts of chemical research.

[31]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[32]  J. Lehn,et al.  Metallionen‐Gitterarchitekturen: funktionelle supramolekulare Metallkomplexe , 2004 .

[33]  K. E. Gates,et al.  XSophe-Sophe-XeprView. A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. , 2004, Journal of inorganic biochemistry.

[34]  F. Lloret,et al.  Long-range magnetic coupling through extended pi-conjugated aromatic bridges in dinuclear copper(II) metallacyclophanes. , 2003, Journal of the American Chemical Society.

[35]  W. Kaim,et al.  Azo compounds as electron acceptor or radical ligands in transition metal species: spectroelectrochemistry and high-field EPR studies of ruthenium, rhodium and copper complexes of 2,2'-azobis(5-chloropyrimidine) , 2003 .

[36]  K. Wieghardt,et al.  A unique series of dinuclear transition metal-polyradical complexes with a m-phenylenediamine spacer and their catalytic reactivity. , 2003, Chemical communications.

[37]  Joan Cano,et al.  About the calculation of exchange coupling constants in polynuclear transition metal complexes , 2003, J. Comput. Chem..

[38]  K. Wieghardt,et al.  Exchange Interactions and Covalency in Dinuclear Complexes of Iron(III) and Gallium(III) Containing the Redox‐Noninnocent Ligand 1,2‐Bis(3,5‐di‐tert‐butyl‐2‐hydroxyphenyl)oxamide , 2003 .

[39]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[40]  C. Sangregorio,et al.  Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals. , 2003, Inorganic chemistry.

[41]  C. Sangregorio,et al.  HF-EPR to monitor electron transfer in mixed valence dioxolene metal complexes , 2003 .

[42]  L. Thompson Polynuclear coordination complexes—from dinuclear to nonanuclear and beyond , 2002 .

[43]  R. Fröhlich,et al.  Gezielte Synthese von ferromagnetisch gekoppelten Komplexen mit modifizierten 1,3,5‐Trihydroxybenzolliganden , 2002 .

[44]  R. Fröhlich,et al.  Targeted synthesis of ferromagnetically coupled complexes with modified 1,3,5-trihydroxybenzene ligands. , 2002, Angewandte Chemie.

[45]  J. Long,et al.  Tetracyanide-bridged divanadium complexes: redox switching between strong antiferromagnetic and strong ferromagnetic coupling. , 2002, Journal of the American Chemical Society.

[46]  A. Caneschi,et al.  High-spin metal complexes containing a ferromagnetically coupled tris(semiquinone) ligand. , 2002, Inorganic chemistry.

[47]  Michael D. Ward,et al.  Non-innocent behaviour in mononuclear and polynuclear complexes: consequences for redox and electronic spectroscopic properties , 2002 .

[48]  Jean-Pierre Launay,et al.  Long-distance intervalence electron transfer , 2001 .

[49]  T. Meyer,et al.  The localized-to-delocalized transition in mixed-valence chemistry. , 2001, Chemical reviews.

[50]  F. Lloret,et al.  Ferromagnetic Coupling through Spin Polarization in a Dinuclear Copper(II) Metallacyclophane. , 2001, Angewandte Chemie.

[51]  A. Caneschi,et al.  Ferromagnetically coupled bis(semiquinone) ligand enforces high-spin ground states in bis-metal complexes. , 2001, Inorganic chemistry.

[52]  W. Kaim,et al.  Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion. , 2000, Accounts of chemical research.

[53]  Gerhard F. Swiegers,et al.  New Self-Assembled Structural Motifs in Coordination Chemistry (Chem. Rev. 2000, 100, xxxx. Published on the Web July 15, 2000.). , 2000, Chemical reviews.

[54]  Pere Alemany,et al.  Broken symmetry approach to calculation of exchange coupling constants for homobinuclear and heterobinuclear transition metal complexes , 1999, J. Comput. Chem..

[55]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[56]  A. Aukauloo,et al.  A Square-Planar Dinickel(II) Complex with a Noninnocent Dinucleating Oxamate Ligand: Evidence for a Ligand Radical Species , 1999 .

[57]  B. Brunschwig,et al.  Energy surfaces, reorganization energies, and coupling elements in electron transfer , 1999 .

[58]  J. Tomasi,et al.  The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level , 1999 .

[59]  Frédéric Paul,et al.  Organometallic molecular wires and other nanoscale-sized devices: An approach using the organoiron (dppe)Cp*Fe building block , 1998 .

[60]  K. Costuas,et al.  [(Cp*)(dppe)Fe(III)−]+ Units Bridged through 1,3-Diethynylbenzene and 1,3,5-Triethynylbenzene Spacers: Ferromagnetic Metal−Metal Exchange Interaction , 1998 .

[61]  Brian L. Claus,et al.  New Magnetically Coupled Bimetallic Complexes as Potential Building Blocks for Magnetic Materials , 1998 .

[62]  S. Alvarez,et al.  MAGNETIC COUPLING IN END-ON AZIDO-BRIDGED TRANSITION METAL COMPLEXES : A DENSITY FUNCTIONAL STUDY , 1998 .

[63]  M. Ward,et al.  The Role of Bridging Ligands in Controlling Electronic and Magnetic Properties in Polynuclear Complexes , 1998 .

[64]  M. Ward,et al.  Effects of Systematic Variation in Bridging Ligand Structure on the Electrochemical and Magnetic Properties of a Series of Dinuclear Molybdenum Complexes. , 1996, Inorganic chemistry.

[65]  M. Nardelli,et al.  PARST95 – an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses , 1995 .

[66]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[67]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[68]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[69]  A. Caneschi,et al.  Toward molecular magnets: The metal-radical approach , 1989 .

[70]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[71]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[72]  D. Hendrickson,et al.  Crystal and molecular structure of .mu.-benzidine-bis(2,2',2''-triaminotriethylamine)dicopper(II) nitrate , 1979 .

[73]  D. Hendrickson,et al.  Magnetic exchange interactions in binuclear transition-metal complexes. 17. Benzidine and p-phenylenediamine, extended aromatic diamine bridging ligands in binuclear copper(II) 2,2',2''-triaminotriethylamine and vanadyl bis(hexafluoroacetylacetonate) complexes , 1978 .

[74]  Roald Hoffmann,et al.  Orbital interactions in metal dimer complexes , 1975 .

[75]  L. Michaelis,et al.  The Free Radicals of the Type of Wurster's Salts , 1939 .

[76]  P. Low,et al.  Transition Metal Complexes Containing All-Carbon Ligands , 2004 .

[77]  F. Lloret,et al.  Stabilization of copper(III) complexes by substituted oxamate ligands , 1998 .

[78]  A. Aukauloo,et al.  Stabilization of copper( III ) complexes by disubstituted oxamides and related ligands , 1997 .

[79]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[80]  John E. Carpenter,et al.  The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions , 1988 .

[81]  R. Naaman,et al.  The structure of small molecules and ions , 1988 .