Challenges in developing efficient Calderon preconditioners for resonating or high material contrast penetrable objects

Calderon preconditioning is a recently proposed technique for improving conditioning of ill-conditioned matrices arising from discretization of surface integral equations. In electromagnetics the method has been developed for both perfectly conducting and homogeneous penetrable objects. In the case of penetrable objects the large variety of possible material parameters poses additional challenges on the efficiency of the preconditioner. We demonstrate with numerical experiments that problems may appear in particular at high material parameter values, at the physical resonances of the object, and at negative or zero material parameters. As realistic examples of objects with zero or negative material parameters we consider plasmonic nanoparticles at optical wavelengths.

[1]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[2]  P. Yla-Oijala,et al.  Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles , 2006, IEEE Transactions on Antennas and Propagation.

[3]  Jian-Ming Jin,et al.  A Comparative Study of Calderón Preconditioners for PMCHWT Equations , 2010, IEEE Transactions on Antennas and Propagation.

[4]  Kazuki Niino,et al.  Calderón preconditioning approaches for PMCHWT formulations for Maxwell's equations , 2012 .

[5]  R. Harrington Boundary integral formulations for homogeneous material bodies , 1989 .

[6]  Seppo Järvenpää,et al.  Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods , 2005 .

[7]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[8]  A. Buffa,et al.  A multiplicative Calderón preconditioner for the electric field integral equation , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[9]  Francesco P. Andriulli,et al.  A Calderón Multiplicative Preconditioner for the PMCHWT integral equation , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[10]  Johannes Markkanen,et al.  Error-controllable and well-conditioned mom solutions in computational electromagnetics: ultimate surface integral-equation formulation [open problems in cem] , 2013, IEEE Antennas and Propagation Magazine.

[11]  J. M. Taboada,et al.  Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers. , 2012, Optics express.

[12]  E. Michielssen,et al.  A Calderon Multiplicative Preconditioner for the PMCHWT Equation for Scattering by Chiral Objects , 2012, IEEE Transactions on Antennas and Propagation.

[13]  Luis Landesa,et al.  Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[17]  Weng Cho Chew,et al.  Stability of surface integral equation for left-handed materials , 2007 .

[18]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[19]  A. Sihvola,et al.  Composite near-field superlens design using mixing formulas and simulations , 2009 .

[20]  L. J. Chu,et al.  Diffraction Theory of Electromagnetic Waves , 1939 .