Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT≈1, the CPV/TEG system is more efficient than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost.

[1]  Chang Chung Yang,et al.  Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator , 2014 .

[2]  K. Goodson,et al.  Material and manufacturing cost considerations for thermoelectrics , 2014 .

[3]  Lauryn L. Baranowski,et al.  Effective thermal conductivity in thermoelectric materials , 2013 .

[4]  Gilles Notton,et al.  Modelling of a double-glass photovoltaic module using finite differences , 2005 .

[5]  A. Rezania,et al.  New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power , 2012, Journal of Electronic Materials.

[6]  Lan Xiao,et al.  Performance analysis of photovoltaic–thermoelectric hybrid system with and without glass cover , 2015 .

[7]  Keith A. Woodbury,et al.  Modeling and Analysis of a Combined Photovoltaic-Thermoelectric Power Generation System , 2012 .

[8]  Bihong Lin,et al.  Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device , 2014 .

[9]  Trung Nghia Tran,et al.  Development of a Seebeck coefficient Standard Reference Material , 2009 .

[10]  Yao Wang,et al.  High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management , 2016 .

[11]  K. Reddy,et al.  Design, Development, and Analysis of a Densely Packed 500x Concentrating Photovoltaic Cell Assembly on Insulated Metal Substrate , 2015 .

[12]  S. C. Kaushik,et al.  Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system , 2016 .

[13]  D. P. Sekulic,et al.  Fundamentals of Heat Exchanger Design , 2003 .

[14]  Evangelos Hristoforou,et al.  Experimental analysis and performance evaluation of a tandem photovoltaic–thermoelectric hybrid system , 2016 .

[15]  Dezso Sera,et al.  Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe , 2016 .

[16]  Yimin Xuan,et al.  Biomimetic omnidirectional broadband structured surface for photon management in photovoltaic–thermoelectric hybrid systems , 2016 .

[17]  Hui Lv,et al.  Temperature-dependent model of concentrator photovoltaic modules combining optical elements and III–V multi-junction solar cells , 2015 .

[18]  Tianjun Liao,et al.  Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system , 2015 .

[19]  Choongho Yu,et al.  Lossless hybridization between photovoltaic and thermoelectric devices , 2013, Scientific Reports.

[20]  W.G.J.H.M. van Sark,et al.  Feasibility of photovoltaic – Thermoelectric hybrid modules , 2011 .

[21]  Lidong Chen,et al.  Thermoelectrics: Direct Solar Thermal Energy Conversion , 2008 .

[22]  K. T. Chau,et al.  An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking , 2011 .

[23]  Christopher G. Provatidis,et al.  Computational analysis and performance optimization of a solar thermoelectric generator , 2015 .

[24]  Frédéric Lesage,et al.  Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system , 2015 .

[25]  S. LeBlanc Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications , 2014 .

[26]  D. L. Evans,et al.  Simplified method for predicting photovoltaic array output , 1980 .

[27]  H. Nowak The sky temperature in net radiant heat loss calculations from low-sloped roofs , 1989 .

[28]  Wei Zhu,et al.  Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design , 2013 .

[29]  Lasse Rosendahl,et al.  A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application , 2015 .

[30]  Rajeev J Ram,et al.  Optimization of Heat Sink–Limited Thermoelectric Generators , 2006 .

[31]  L. P. Bulat,et al.  Thermal-photovoltaic solar hybrid system for efficient solar energy conversion , 2006 .

[32]  Xiaofeng Wu,et al.  Power and mass optimization of the hybrid solar panel and thermoelectric generators , 2016 .

[33]  Chris Van Hoof,et al.  Hybrid Thermoelectric–Photovoltaic Generators in Wireless Electroencephalography Diadem and Electrocardiography Shirt , 2009 .

[34]  Yuan Wang,et al.  Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device , 2014 .

[35]  Todd Otanicar,et al.  Envisioning advanced solar electricity generation: Parametric studies of CPV/T systems with spectral filtering and high temperature PV , 2015 .

[36]  Yimin Xuan,et al.  Performance estimation of photovoltaic–thermoelectric hybrid systems , 2014 .

[37]  Eugene A. Katz,et al.  Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling , 2015 .

[38]  Abraham Kribus,et al.  Analysis of Potential Conversion Efficiency of a Solar Hybrid System With High-Temperature Stage , 2006 .

[39]  Y. Xuan,et al.  From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum , 2016 .

[40]  H. Cotal,et al.  Heat transfer modeling of concentrator multijunction solar cell assemblies using finite difference techniques , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[41]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[42]  Shannon K. Yee,et al.  $ per W metrics for thermoelectric power generation: beyond ZT , 2013 .