Submodularity, Supermodularity, and Higher-Order Monotonicities of Pseudo-Boolean Functions
暂无分享,去创建一个
[1] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[2] Peter L. Hammer,et al. Boolean Methods in Operations Research and Related Areas , 1968 .
[3] S. Fujishige,et al. A Strongly Polynomial-Time Algorithm for Minimizing Submodular Functions (Algorithm Engineering as a New Paradigm) , 1999 .
[4] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[5] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[6] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[7] Y. Crama,et al. A Characterization of a Cone of Pseudo-Boolean Functions via Supermodularity-Type Inequalities , 1989 .
[8] Satoru Iwata,et al. A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.
[9] Michel Grabisch,et al. Equivalent Representations of Set Functions , 2000, Math. Oper. Res..
[10] D. M. Topkis. Supermodularity and Complementarity , 1998 .
[11] H. Narayanan. Submodular functions and electrical networks , 1997 .
[12] L. Shapley. A Value for n-person Games , 1988 .