Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems

[1]  Xiangyun Song,et al.  Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells , 2012 .

[2]  M. Marcus,et al.  Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy , 2012 .

[3]  T. Abe,et al.  Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite Negative-Electrodes in Lithium-Ion Batteries , 2012 .

[4]  Yang-Kook Sun,et al.  Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2cell at elevated temperature and additives to improve its cycle life , 2011 .

[5]  Kazuhisa Tamura,et al.  Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. , 2010, Journal of the American Chemical Society.

[6]  Kenneth A. Walz,et al.  Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings , 2010 .

[7]  Daniel P. Abraham,et al.  Evidence of Transition-Metal Accumulation on Aged Graphite Anodes by SIMS , 2008 .

[8]  Dennis W. Dees,et al.  Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode , 2007 .

[9]  A. Jansen,et al.  Theoretical examination of reference electrodes for lithium-ion cells , 2007 .

[10]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[11]  Jingyu Xi,et al.  Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery , 2006 .

[12]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[13]  Shinichi Komaba,et al.  Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C ∕ LiMn2O4 Li-Ion Cells , 2005 .

[14]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[15]  Dennis W. Dees,et al.  Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells , 2004 .

[16]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[17]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[18]  Vilas G. Pol,et al.  Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method , 2003 .

[19]  H. Groult,et al.  Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive , 2003 .

[20]  J. Prakash,et al.  The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel LiMn2 O 4 Cathode Materials at Elevated Temperature , 2003 .

[21]  Shinichi Komaba,et al.  Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries , 2003 .

[22]  Ryoji Marubayashi,et al.  Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries , 2002 .

[23]  S. Komaba,et al.  Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries , 2002 .

[24]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[25]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[26]  Michael M. Thackeray,et al.  Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling , 1999 .

[27]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[28]  E. Barsoukov,et al.  Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence , 1999 .

[29]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[30]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[31]  Seung M. Oh,et al.  Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / Li x Mn2 O 4 Rechargeable Cells , 1997 .

[32]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[33]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[34]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[35]  Diana Golodnitsky,et al.  The sei model—application to lithium-polymer electrolyte batteries , 1995 .

[36]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[37]  Jean-Marie Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization. , 1992 .

[38]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[39]  Earl K. Graham,et al.  Pressure and temperature dependence of the elastic properties of synthetic MnO , 1991 .

[40]  John B. Goodenough,et al.  AC impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2 , 1985 .

[41]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[42]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .